Benchmarking verification of control rod effects on CMRR using MCNP codes throughout 3D core modeling and rod-drop experiment
-
摘要: 反应堆控制棒是核反应堆紧急控制和功率调节所不可缺少的控制部件,控制棒价值直接关系反应堆的停堆深度。采用MCNP和ORIGEN程序对CMRR反应堆全堆芯三维详细建模计算,并分别利用落棒法、逆动态法对控制棒积分价值、微分价值进行刻度,理论与实验吻合较好。单根安全棒的积分价值约大于4%Δk/k,事故工况下卡一根安全棒的停堆深度仍然大于10%Δk/k,验证了堆芯物理设计,保障了CMRR反应堆的运行安全。Abstract: In this research, MCNP code and ORIGEN code are used to calculate the control rod reactivity worth effects by simulating the 3D core model of CMRR reactor. The integral and differential behaviors of reactivity worth effects are measured by rod-drop experiments and digital inverse kinetic method with each other. The calculated and measured results are well accorded. The integral reactivity worth of one safety rod is about 4%Δk/k. Even in an accident when one safety rod gets stuck, the CMRR shutdown margin is still greater than 10%Δk/k, and CMRR is totally safe. So the physical design of CMRR is highly reliable and the operation could be safe.
-
Key words:
- control rod reactivity worth /
- MCNP code /
- CMRR /
- rod-drop experiments /
- inverse kinetic method
-
表 1 核燃料原子密度对反应堆有效增值因子(keff)的影响
Table 1. Effect on effective multiplication factor(keff) of nuclear fuel atomic density
percentage of nuclear fuel nominal value/% atomic density of nuclear fuel /1024 first criticality keff standard error 100 0.054 08 0.054 08 1.003 21 0.000 04 102 0.055 16 - 1.006 25 0.000 04 98 0.053 00 - 1.000 16 0.000 04 表 2 主要物理参数(轻水温度)对反应堆有效增值因子(keff)的影响
Table 2. Effect on effective multiplication factor(keff) of light water temperature
temperature of light water/℃ atomic density of light water/1024 first criticality keff standard error 13 0.100 32 0.100 32 1.003 21 0.000 04 20 0.100 20 - 1.002 97 0.000 04 30 0.099 95 - 1.001 99 0.000 04 40 0.099 60 - 1.000 79 0.000 04 表 3 主要物理参数(重水温度)对反应堆有效增值因子(keff)的影响
Table 3. Effect on effective multiplication factor(keff) of heavy water temperature
temperature of heavy water/℃ atomic density of heavy water/1024 first criticality keff standard error 13 0.100 00 0.100 00 1.003 21 0.000 04 20 0.099 86 - 1.003 26 0.000 04 30 0.099 56 - 1.003 20 0.000 04 表 4 CMRR的带燃耗临界棒位计算结果
Table 4. Critical rod position considering burnup of the fuel element
rod position in the zero power condition/mm keff calculated with codes MCNP and ORIGEN standard error beginning of first core loading 311 1.003 21 0.000 04 end of first core loading 433 1.002 78 0.000 04 beginning of second core loading 350 1.006 03 0.000 04 end of second core loading 448 0.999 46 0.000 04 beginning of third core loading 328 0.998 22 0.000 04 表 5 首次临界控制棒反应性价值
Table 5. Reactivity worth of control rod in the first critical core
theoretical value/(Δk/k) experimental value/(Δk/k) method 1# safety rod reactivity worth -0.045 13 — rod drop 2# safety rod reactivity worth -0.046 07 — rod drop 1# safety rod reactivity worth -0.040 17 -0.039 90 compensation 2# safety rod reactivity worth -0.038 73 -0.038 30 compensation 1# regulating control rod reactivity worth -0.031 95 -0.030 81 alternate motion 2# regulating control rod reactivity worth -0.032 44 -0.031 47 alternate motion 表 6 第二次换载后落棒法测量控制棒反应性价值实验结果与理论结果
Table 6. Rod value results throughout modeling and rod-drop experiment after the second core loading
theoretical value/(Δk/k) experimental value/(Δk/k) 1# safety rod reactivity worth with 0.054 59 0.050 81 2# safety rod reactivity worth with 0.053 55 0.053 06 1#+2# safety rod reactivity worth with 0.139 46 0.132 70 shutdown margin with 2# safety rod stuck 0.151 29 0.108 40 shutdown margin 0.301 67 0.242 60 -
[1] IAEA. Utilization-related design features of research reactors: a compendium[R]. Technical Report No. 455, 2007. [2] IAEA. Safety analyses for research reactors[R]. Safety Report No. 55, 2008. [3] IAEA. Core management and fuel handling for research reactors[R]. Safety Standard No. NS-G-4.3, 2008. [4] IAEA. Operational limits and conditions and operating procedures for research reactors[R]. Safety Standard No. NS-G-4.4, 2008. [5] ORNL. WIMS-D4: Winfrith Improved Multigroup Scheme code system[R]. Code CCC-575, 1991. [6] Fowler T B, Vondy D R, Cunningham G W, et al. Nuclear reactor core analysis code: CITATION[R]. ORNL-TM-2496, 1971. [7] ORNL. Scale: A comprehensive modeling and simulation suite for nuclear safety analysis and design[R]. ORNL-TM-39, 2005. [8] Briesmeister J F. MCNP—A general Monte Carlo N-particle transport code version 4C[R]. LA-13709-M, 2000. [9] 黄洪文, 叶林, 钱达志, 等. 新型铪控制棒的研制[J]. 核动力工程, 2008, 29(3): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200803012.htmHuang Hongwen, Ye Lin, Qian Dazhi, et al. Development and manufacture of new-style hafnium control rod. Nuclear Power Engineering, 2008, 29(3): 48-51 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200803012.htm [10] MacFarlane R E. Data testing for ENDF/B-Ⅶ[R]. Los Alamos National Laboratory, 2011. [11] 李润东, 代君龙, 王学杰. 300#堆周期和反应性数字化测量技术研究[C]//第五届全国核仪器及其应用学术会议. 2007: 188-191.Li Rundong, Dai Junlong, Wang Xuejie. Measurement digitalization for period and reactivity of SPRR-300//Proceedings of the China Conference on Nuclear Instrument Application & Nuclear Detection Technology & Nuclear Measurement Method. 2007: 188-191