留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用MCNP模拟及落棒法刻度CMRR控制棒价值

窦海峰 李润东 冷军 袁姝 杨鑫 冯琦杰 刘晓 高产

窦海峰, 李润东, 冷军, 等. 采用MCNP模拟及落棒法刻度CMRR控制棒价值[J]. 强激光与粒子束, 2018, 30: 056001. doi: 10.11884/HPLPB201830.170345
引用本文: 窦海峰, 李润东, 冷军, 等. 采用MCNP模拟及落棒法刻度CMRR控制棒价值[J]. 强激光与粒子束, 2018, 30: 056001. doi: 10.11884/HPLPB201830.170345
Dou Haifeng, Li Rundong, Leng Jun, et al. Benchmarking verification of control rod effects on CMRR using MCNP codes throughout 3D core modeling and rod-drop experiment[J]. High Power Laser and Particle Beams, 2018, 30: 056001. doi: 10.11884/HPLPB201830.170345
Citation: Dou Haifeng, Li Rundong, Leng Jun, et al. Benchmarking verification of control rod effects on CMRR using MCNP codes throughout 3D core modeling and rod-drop experiment[J]. High Power Laser and Particle Beams, 2018, 30: 056001. doi: 10.11884/HPLPB201830.170345

采用MCNP模拟及落棒法刻度CMRR控制棒价值

doi: 10.11884/HPLPB201830.170345
详细信息
    作者简介:

    窦海峰(1979-), 男,从事反应堆物理及应用研究;douhaifeng@caep.cn

    通讯作者:

    冷军(1983-), 男,从事反应堆物理及应用研究;lengjun20130715@caep.cn

  • 中图分类号: TL329.2

Benchmarking verification of control rod effects on CMRR using MCNP codes throughout 3D core modeling and rod-drop experiment

  • 摘要: 反应堆控制棒是核反应堆紧急控制和功率调节所不可缺少的控制部件,控制棒价值直接关系反应堆的停堆深度。采用MCNP和ORIGEN程序对CMRR反应堆全堆芯三维详细建模计算,并分别利用落棒法、逆动态法对控制棒积分价值、微分价值进行刻度,理论与实验吻合较好。单根安全棒的积分价值约大于4%Δk/k,事故工况下卡一根安全棒的停堆深度仍然大于10%Δk/k,验证了堆芯物理设计,保障了CMRR反应堆的运行安全。
  • 图  1  调节棒微分价值实验与计算值

    Figure  1.  Differential value of control rods

    表  1  核燃料原子密度对反应堆有效增值因子(keff)的影响

    Table  1.   Effect on effective multiplication factor(keff) of nuclear fuel atomic density

    percentage of nuclear fuel nominal value/% atomic density of nuclear fuel /1024 first criticality keff standard error
    100 0.054 08 0.054 08 1.003 21 0.000 04
    102 0.055 16 - 1.006 25 0.000 04
    98 0.053 00 - 1.000 16 0.000 04
    下载: 导出CSV

    表  2  主要物理参数(轻水温度)对反应堆有效增值因子(keff)的影响

    Table  2.   Effect on effective multiplication factor(keff) of light water temperature

    temperature of light water/℃ atomic density of light water/1024 first criticality keff standard error
    13 0.100 32 0.100 32 1.003 21 0.000 04
    20 0.100 20 - 1.002 97 0.000 04
    30 0.099 95 - 1.001 99 0.000 04
    40 0.099 60 - 1.000 79 0.000 04
    下载: 导出CSV

    表  3  主要物理参数(重水温度)对反应堆有效增值因子(keff)的影响

    Table  3.   Effect on effective multiplication factor(keff) of heavy water temperature

    temperature of heavy water/℃ atomic density of heavy water/1024 first criticality keff standard error
    13 0.100 00 0.100 00 1.003 21 0.000 04
    20 0.099 86 - 1.003 26 0.000 04
    30 0.099 56 - 1.003 20 0.000 04
    下载: 导出CSV

    表  4  CMRR的带燃耗临界棒位计算结果

    Table  4.   Critical rod position considering burnup of the fuel element

    rod position in the zero power condition/mm keff calculated with codes MCNP and ORIGEN standard error
    beginning of first core loading 311 1.003 21 0.000 04
    end of first core loading 433 1.002 78 0.000 04
    beginning of second core loading 350 1.006 03 0.000 04
    end of second core loading 448 0.999 46 0.000 04
    beginning of third core loading 328 0.998 22 0.000 04
    下载: 导出CSV

    表  5  首次临界控制棒反应性价值

    Table  5.   Reactivity worth of control rod in the first critical core

    theoretical value/(Δk/k) experimental value/(Δk/k) method
    1# safety rod reactivity worth -0.045 13 rod drop
    2# safety rod reactivity worth -0.046 07 rod drop
    1# safety rod reactivity worth -0.040 17 -0.039 90 compensation
    2# safety rod reactivity worth -0.038 73 -0.038 30 compensation
    1# regulating control rod reactivity worth -0.031 95 -0.030 81 alternate motion
    2# regulating control rod reactivity worth -0.032 44 -0.031 47 alternate motion
    下载: 导出CSV

    表  6  第二次换载后落棒法测量控制棒反应性价值实验结果与理论结果

    Table  6.   Rod value results throughout modeling and rod-drop experiment after the second core loading

    theoretical value/(Δk/k) experimental value/(Δk/k)
    1# safety rod reactivity worth with 0.054 59 0.050 81
    2# safety rod reactivity worth with 0.053 55 0.053 06
    1#+2# safety rod reactivity worth with 0.139 46 0.132 70
    shutdown margin with 2# safety rod stuck 0.151 29 0.108 40
    shutdown margin 0.301 67 0.242 60
    下载: 导出CSV
  • [1] IAEA. Utilization-related design features of research reactors: a compendium[R]. Technical Report No. 455, 2007.
    [2] IAEA. Safety analyses for research reactors[R]. Safety Report No. 55, 2008.
    [3] IAEA. Core management and fuel handling for research reactors[R]. Safety Standard No. NS-G-4.3, 2008.
    [4] IAEA. Operational limits and conditions and operating procedures for research reactors[R]. Safety Standard No. NS-G-4.4, 2008.
    [5] ORNL. WIMS-D4: Winfrith Improved Multigroup Scheme code system[R]. Code CCC-575, 1991.
    [6] Fowler T B, Vondy D R, Cunningham G W, et al. Nuclear reactor core analysis code: CITATION[R]. ORNL-TM-2496, 1971.
    [7] ORNL. Scale: A comprehensive modeling and simulation suite for nuclear safety analysis and design[R]. ORNL-TM-39, 2005.
    [8] Briesmeister J F. MCNP—A general Monte Carlo N-particle transport code version 4C[R]. LA-13709-M, 2000.
    [9] 黄洪文, 叶林, 钱达志, 等. 新型铪控制棒的研制[J]. 核动力工程, 2008, 29(3): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200803012.htm

    Huang Hongwen, Ye Lin, Qian Dazhi, et al. Development and manufacture of new-style hafnium control rod. Nuclear Power Engineering, 2008, 29(3): 48-51 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200803012.htm
    [10] MacFarlane R E. Data testing for ENDF/B-Ⅶ[R]. Los Alamos National Laboratory, 2011.
    [11] 李润东, 代君龙, 王学杰. 300#堆周期和反应性数字化测量技术研究[C]//第五届全国核仪器及其应用学术会议. 2007: 188-191.

    Li Rundong, Dai Junlong, Wang Xuejie. Measurement digitalization for period and reactivity of SPRR-300//Proceedings of the China Conference on Nuclear Instrument Application & Nuclear Detection Technology & Nuclear Measurement Method. 2007: 188-191
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  1228
  • HTML全文浏览量:  258
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-01
  • 修回日期:  2018-01-15
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回