留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四级串联共用腔体MA级FLTD的设计与仿真

孙凤举 姜晓峰 王志国 魏浩 邱爱慈

孙凤举, 姜晓峰, 王志国, 等. 四级串联共用腔体MA级FLTD的设计与仿真[J]. 强激光与粒子束, 2018, 30: 035001. doi: 10.11884/HPLPB201830.170351
引用本文: 孙凤举, 姜晓峰, 王志国, 等. 四级串联共用腔体MA级FLTD的设计与仿真[J]. 强激光与粒子束, 2018, 30: 035001. doi: 10.11884/HPLPB201830.170351
Sun Fengju, Jiang Xiaofeng, Wang Zhiguo, et al. Design and simulation of fast linear transformer driver with four stages in series sharing common cavity shell and mega-ampere current[J]. High Power Laser and Particle Beams, 2018, 30: 035001. doi: 10.11884/HPLPB201830.170351
Citation: Sun Fengju, Jiang Xiaofeng, Wang Zhiguo, et al. Design and simulation of fast linear transformer driver with four stages in series sharing common cavity shell and mega-ampere current[J]. High Power Laser and Particle Beams, 2018, 30: 035001. doi: 10.11884/HPLPB201830.170351

四级串联共用腔体MA级FLTD的设计与仿真

doi: 10.11884/HPLPB201830.170351
基金项目: 

国家自然科学基金项目 5179520012

国家自然科学基金项目 51790521

国家自然科学基金项目 51790523

详细信息
    作者简介:

    孙凤举(1967—),男,博士,研究员,主要从事脉冲功率技术研究; sun-feng-ju@126.com

  • 中图分类号: TL51;TM836

Design and simulation of fast linear transformer driver with four stages in series sharing common cavity shell and mega-ampere current

  • 摘要: 目前MA级快脉冲直线变压器驱动源(FLTD)模块一般引入2~4路快前沿(约20 ns)高幅值(100 kV)电脉冲触发,百TW级数十MA的FLTD驱动源含有数千个模块,其触发系统非常庞大,并且要求触发脉冲按照精确时序到达各级串联模块,以便实现与次级行波同步的感应电压高效叠加,触发系统成为大型FLTD驱动源的瓶颈之一。在之前提出的一种利用一路外触发脉冲实现数十模块串联FLTD与次级行波同步的感应电压高效叠加触发方式基础上,设计了4级串联共用腔体的MA级FLTD模块组,每级共24支路,其中1个用作触发支路,主放电支路由2只100 nF双端引出电极电容器和1只GW级气体开关组成;建立了16级串联、次级为水线的单路FLTD电路模型,数值仿真研究了支路开关自放电、触发支路开关闭合时序与分散性,以及次级传输线阻抗对驱动源的影响。
  • 图  1  主放电支路

    Figure  1.  Main brick of Fast Linear Transformer Driver (FLTD)

    图  2  主放电支路短路放电电流波形

    Figure  2.  Discharge current of main brick at short load

    图  3  四级串联共用腔体FLTD模块结构

    Figure  3.  Configuration of FLTD module with 4 stages sharing common cavity

    图  4  每级FLTD主放电支路触发连线方式

    Figure  4.  Line connection of triggering of switches

    图  5  16级串联FLTD等效电路模型

    Figure  5.  Equivalent circuit of 16-stage FLTD

    图  6  次级水传输线电路模型

    Figure  6.  Model of secondary water-insulated transmission line

    图  7  匹配负载电流随支路电感的变化

    Figure  7.  Load current waveforms

    图  8  支路开关自放电其他支路开关两端电压的变化

    Figure  8.  Voltages of other switches when one switch prefires, impedance coefficient m=1 to 5

    图  9  自放电支路电流m=1~5

    Figure  9.  Current of prefire brick, m=1 to 5

    图  10  自放电支路和正常放电时支路电流波形

    Figure  10.  Prefire brick current and normal operating brick's current

    图  11  采用IVA时序开关闭合时间分散性对16级串联FLTD负载电流波形的影响

    Figure  11.  Influence of time jitters of closing sequence of FLTD switches at ideal IVA mode on matched impedance load current

    图  12  三种典型时序下匹配负载波形

    Figure  12.  Load current at three triggering sequences

    图  13  α从0到3,间隔0.15负载电流波形

    Figure  13.  Load currents when triggering coefficient α from 0 to 3 interval 0.15

    表  1  负载电流峰值与前沿随支路电感的变化

    Table  1.   Load's peak current and rise time change with brick inductance

    Lb/nH Ip/kA Tr/ns Lb/nH Ip/kA Tr/ns
    140 992 46.8 150 963 48.4
    160 936 50.6 170 912 52.7
    180 889 54.9 190 868 57.1
    200 847 59.1 210 830 61.3
    220 812 63.5 230 797 65.4
    240 781 67.4 250 766 69.4
    260 753 71.1
    下载: 导出CSV

    表  2  开关闭合分散性对负载电流峰值及前沿的影响

    Table  2.   Influence of time jitters of closing sequence of FLTD switches on load current peak and rise time

    Δt/ns Ip/kA rise time (0.1~0.9): Tr/ns
    max min average δ max min average δ
    3 868 836 849 5.9 70 58 62 2.8
    5 867 831 849 8.4 75 55 65.5 4.6
    10 899 828 861 16.1 103.5 58.7 74.0 8.8
    下载: 导出CSV
  • [1] 梁天学, 姜晓峰, 孙凤举, 等. 300 kA直线型变压器驱动源模块实验研究[J]. 强激光与粒子束, 2012, 24 (3): 655-658. doi: 10.3788/HPLPB20122403.0655

    Liang Tianxue, Jiang Xiaofeng, Sun Fengju, et al. Experimental investigation of 300 kA fast linear transformer driver stage. High Power Laser and Particle Beams, 2012, 24 (3): 655-658 doi: 10.3788/HPLPB20122403.0655
    [2] 陈林, 王勐, 邹文康, 等. 中物院快脉冲直线型变压器驱动源技术研究进展[J]. 高电压技术, 2015, 41 (6): 1798-1806. doi: 10.13336/j.1003-6520.hve.2015.06.005

    Chen Lin, Wang Meng, Zou Wenkang, et al. Recent advances in fast linear transformer driver in CAEP. High Voltage Engineering, 2015, 41 (6): 1798-1806 doi: 10.13336/j.1003-6520.hve.2015.06.005
    [3] Kim A A, Mazarakis M G, Sinebryukhov V A, et al. Development and tests of fast 1-MA linear transformer driver stages[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 050402.
    [4] Kovalchuk B M, Kharlov A V, Kumpyyak E V, et al. Pulsed generator based on air-insulated linear-transformer-driver stages[J]. Physical Review Special Topics—Accelerators and Beams, 2013, 16: 030401.
    [5] Woodworth J R, Fowler W E, Stoltzfus B S, et al. Compact 810 kA linear transformer driver cavity[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14: 040401. doi: 10.1103/PhysRevSTAB.14.040401
    [6] Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Physical Review Special Topics—Accelerators and Beams, 2015, 18: 110401.
    [7] Zhou Lin, Li Zhenghong, Wang Zhen, et al. Design of 5-MA 100-ns linear-transformer-driver accelerator for wire array Z pinch experiments[J]. Physical Review Special Topics-Accelerators and Beams, 2016, 19: 030401. doi: 10.1103/PhysRevAccelBeams.19.030401
    [8] Olson C L, Mazarakis M G, Fowler W E, et al. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield[R]. SAND2007-0059, 2007.
    [9] 邓建军, 王勐, 谢卫平, 等. 面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J]. 强激光与粒子束, 2014, 26: 100201. doi: 10.11884/HPLPB201426.100201

    Deng Jianjun, Wang Meng, Xie Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor. High Power Laser and Particle Beams, 2014, 26: 100201 doi: 10.11884/HPLPB201426.100201
    [10] Stygar W A, Cuneo M E, Headley D I, et al. Architecture of petawatt-class Z-pinch accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2007, 10: 030401.
    [11] Michael G Mazarakis, William E Fowler, LeChien K L, et al. High-current linear transformer driver development at Sandia National Laboratories[J]. IEEE Trans Plasma Science, 2010, 38 (4): 704-713.
    [12] Leckbee J, Cordova S, Oliver B, et al. Linear transformer driver (LTD) research for radiographic applications[C]//18th IEEE International Pulsed Power Conference. 2011: 614-618.
    [13] Toury M, Vermare C, Etchessahar B, et al. An 8 MV flash X-rays machine using a LTD design[C]//16th IEEE International Pulsed Power Conference. 2007: 599-602.
    [14] Toury M, Cartier F, Combes P, et al. Transfer and test of a 1 MV LTD generator at CEA[C]//19th IEEE International Pulsed Power Conference. 2013: 766-769.
    [15] Bayol F, Calvignac J, Delpanque R, et al. Development and test of a 800 kV, 35 kA air insulated LTD pulser for radiography application[C]//20th IEEE International Pulsed Power Conference. 2015: 601-606.
    [16] 孙凤举, 邱爱慈, 魏浩, 等. 闪光照相快放电直线型变压器脉冲源新进展[J]. 现代应用物理, 2015, 6 (4): 233-243. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201504001.htm

    Sun Fengju, Qiu Aici, Wei Hao, et al. Development of fast linear transformer drivers for radiography. Modern Applied Physics, 2015, 6 (4): 233-243 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201504001.htm
    [17] 孙凤举, 邱爱慈, 魏浩, 等. 快Z箍缩百太瓦级脉冲驱动源概念设计的发展[J]. 现代应用物理, 2017, 8: 020702. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201702002.htm

    Sun Fengju, Qiu Aici, Wei Hao, et al. Development of conceptual designs on fast Z-pinch pulsed power driver with hundreds of terawatt. Modern Applied Physics, 2017, 8: 020702 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201702002.htm
    [18] Sinars D B, Daniel Scott, Scott K C N, et al. Pulsed power science and technology: a strategic outlook for the National Nuclear Security Administration[R]. LA-UR-16027957, 2016.
    [19] Stygar W A, Flower M E, LeChien K R, et al. Shaping of output pulse of a linear transformer driver module[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 030402.
    [20] Liu Peng, Sun Fengju, Yin Jiahui, et al. Effect of cavity-triggering sequences on output parameters of LTD-based drivers[J]. IEEE Trans Plasma Science, 2011, 39 (5): 1247-1953.
    [21] Liu Peng, Sun Fengju, Yin Jiahui, et al. Influences of the switching jitter on the operating performances of linear transformer drivers[J]. Plasma Science and Technology, 2012, 39 : 725-729.
    [22] Yin Jiahui, Liu Peng, Wei Hao, et al. Trigger method based on secondary induced overvoltage for linear transformer drivers[J]. IEEE Trans Plasma Science, 2013, 41 (7): 1760-1766.
    [23] 孙凤举, 曾江涛, 梁天学, 等. 基于感应腔触发支路和角向线的LTD新型触发技术[J]. 现代应用物理, 2016, 7: 010401. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201601003.htm

    Sun Fengju, Zeng Jiangtao, Liang Tianxue, et al. A novel triggering technique based on an internal brick and azimuthal line in cavities for linear transformer. Modern Applied Physics, 2016, 7: 010401 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201601003.htm
    [24] 孙凤举, 姜晓峰, 魏浩, 等. 一种多级串联共用外腔体新结构LTD[J]. 强激光与粒子束, 2017, 29: 025001. doi: 10.11884/HPLPB201729.160507

    Sun Fengju, Jiang Xiaofeng, Wei Hao, et al. Novel configuration linear transformer driver with multistage in series sharing common cavity shell. High Power Laser and Particle Beams, 2017, 29: 025001 doi: 10.11884/HPLPB201729.160507
    [25] Sun Fengju, Zeng Jiangtao, Liang Tianxue, et al. Trigger method based on internal bricks within cavities methods for linear transformer drivers[C]//20th IEEE International Pulsed Power Conference. 2015.
    [26] Kim A A, Mazarakis M G, Sinebryukhov V A, et al. Lifetime of the HCEI spark gap switch for linear transformer driver[C]//20th IEEE International Pulsed Power Conference. 2015: 196-199.
    [27] Gruner F R, Crest Cedar, Stygar W A, et al. High-voltage, low inductance gas switch: US9294085[P]. 2016-03-22.
    [28] Woodworth J R, Stygar W A, Bennett L F, et al. New low inductance gas switches for linear transformer driver[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 080401.
    [29] Reisman D B, Stoltzfus B S, Stygar W A, et al. Pulsed power accelerator for material physics experiments[J]. Physical Review Special Topics—Accelerators and Beams, 2015, 18: 090401.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1124
  • HTML全文浏览量:  194
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-04
  • 修回日期:  2017-11-09
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回