留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光烧结石墨烯铜复合材料温度场有限元模拟

邵珠强 胡增荣 郭绍雄 倪阳阳 李悦 张瑶 陈长军 王晓南

邵珠强, 胡增荣, 郭绍雄, 等. 激光烧结石墨烯铜复合材料温度场有限元模拟[J]. 强激光与粒子束, 2018, 30: 039001. doi: 10.11884/HPLPB201830.170366
引用本文: 邵珠强, 胡增荣, 郭绍雄, 等. 激光烧结石墨烯铜复合材料温度场有限元模拟[J]. 强激光与粒子束, 2018, 30: 039001. doi: 10.11884/HPLPB201830.170366
Shao Zhuqiang, Hu Zengrong, Guo Shaoxiong, et al. Numerical simulation of temperature field distribution for laser sintering graphene reinforced copper composites[J]. High Power Laser and Particle Beams, 2018, 30: 039001. doi: 10.11884/HPLPB201830.170366
Citation: Shao Zhuqiang, Hu Zengrong, Guo Shaoxiong, et al. Numerical simulation of temperature field distribution for laser sintering graphene reinforced copper composites[J]. High Power Laser and Particle Beams, 2018, 30: 039001. doi: 10.11884/HPLPB201830.170366

激光烧结石墨烯铜复合材料温度场有限元模拟

doi: 10.11884/HPLPB201830.170366
基金项目: 

苏州大学校级大学生创新创业训练计划项目 2016xj066

苏州大学大学生课外学术科研基金资助项目 KY2017716B

详细信息
    作者简介:

    邵珠强(1995-),男,研究方向为激光材料处理,zqshao@foxmail.com

    通讯作者:

    胡增荣(1975-),男,副教授,研究方向为先进制造技术;zengronghu@126.com

  • 中图分类号: TF124.5

Numerical simulation of temperature field distribution for laser sintering graphene reinforced copper composites

  • 摘要: 在激光烧结石墨烯增强铜基复合材料的过程中,了解瞬时温度场分布对优化工艺参数、控制烧结质量有重要作用。建立了激光烧结预涂在42CrMo基板上的石墨烯铜的混合粉末的有限元模型。研究了激光烧结过程温度场分布,熔池的几何参数以及烧结层与基体的冶金结合宽度。为了验证模拟结果,使用与模拟相同的参数进行了单道激光烧结的实验。研究表明,热传导、热辐射和相变潜热在激光烧结过程的温度场分布中起重要作用。实验结果与模拟结果较为一致。所以可以依据模拟结果预测实验的温度场分布和熔池几何参数,同时也可以据此优化激光烧结参数。
  • 图  1  激光烧结石墨烯-铜示意图

    Figure  1.  Schematic of laser sintering process

    图  2  激光烧结石墨烯-铜有限元模型

    Figure  2.  FEM model of laser sintering of graphene-copper composites

    图  3  激光烧结温度场分布云图

    Figure  3.  Contours of laser sintering temperature field at different time

    图  4  3.5 s时的温度场分布云图

    Figure  4.  Contours of laser sintering temperature field on different surface at 3.5 s

    图  5  3.5 s时沿不同线上温度分布情况

    Figure  5.  Temperature distribution on different line at 3.5 s

    图  6  激光烧结过程中选定点上的热循环曲线

    Figure  6.  Thermal cycles of selected points during laser sintering

    图  12  (a) 激光单道烧结石墨烯-铜试样,(b)石墨烯-铜复合材料表面形貌SEM图片

    Figure  12.  (a) Single track laser sintered graphene-copper samples, (b)SEM image of surface morphology of graphene-copper

    图  13  激光烧结石墨烯-铜XRD图谱和拉曼光谱

    Figure  13.  Laser sintered graphene-copper composites, (a)XRD patterns and (b) Raman spectrum

    表  4  不同激光功率模拟在3.5 s时的结果

    Table  4.   Simulation results under different laser power at 3.5 s

    simulation laser power/W highest temperature of coating layer surface/K highest temperature of joint surface /K depth of melting pool /mm width of metallurgical bonding at joint surface/mm
    SP1 70 1477 1290 0.9 0
    SP2 90 1528 1400 0.1 0
    SP3 110 1837 1560 0.11 0
    下载: 导出CSV

    表  5  不同扫描速度模拟在3.5 s时的结果

    Table  5.   Simulation results under different scanning speed at 3.5 s

    simulation scan speed /(mm·min-1) highest temperature of coating layer surface/K highest temperature of joint surface /K depth of melting pool /mm width of metallurgical bonding at joint surface/mm
    Sv1 2 1528 1400 0.1 0
    Sv2 4 1337 1210 0.08 0
    Sv3 6 1224 1120 0 0
    下载: 导出CSV

    表  6  不同激光功率的实验结果(3.5 s)

    Table  6.   Experiment results under different laser power at middle of laser scanning line (3.5 s)

    experiment laser power/W depth of melting pool/mm width of metallurgical bonding at joint surface/mm
    EP1 70 0.05 0
    EP2 90 0.1 15
    EP3 110 0.12 0.05
    下载: 导出CSV
  • [1] Lin D, Liu R C, Cheng G J. Laser sintering of separated and uniformly distributed multiwall carbon nanotubes integrated iron nanocomposites[J]. Journal of Applied Physics, 2014, 115 : 113513. doi: 10.1063/1.4869214
    [2] Lin D, Saei M, Suslov S, et al. Super-strengthening and stabilizing with carbon nanotube harnessed high density nanotwins in metals by shock loading[J]. Sci Rep, 2015, 5: 15405. doi: 10.1038/srep15405
    [3] Kruth J P. Material incress manufacturing by rapid prototyping techniques[J]. CIRP Annals-Manufacturing Technology, 1991, 40 (2): 603-614. doi: 10.1016/S0007-8506(07)61136-6
    [4] 任继文, 彭蓓. 选择性激光烧结技术的研究现状与展望[J]. 机械设计与制造, 2009(10): 266-268. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ200910107.htm

    Ren Jiwen, Peng Bei. Reviews and prospects for selective laser sintering(SLS). Machinery Design & Manufacture, 2009(10): 266-268 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ200910107.htm
    [5] Díaz E, Amado J M, Montero J, et al. Comparative study of Co-based alloys in repairing low Cr-Mo steel components by laser cladding[J]. Physics Procedia, 2012, 39 (39): 368-375.
    [6] Cervera G B M, Lombera G. Numerical prediction of temperature and density distributions in selective laser sintering processes[J]. Rapid Prototyping Journal, 1999, 5 (1): 12-26. doi: 10.1108/13552549910251837
    [7] Carter J L, Krumhansl J A. Band structure of graphite[J]. The Journal of Chemical Physics, 1953, 21 (12): 2238-2239. doi: 10.1063/1.1698840
    [8] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902-907. doi: 10.1021/nl0731872
    [9] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666-669. doi: 10.1126/science.1102896
    [10] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385-388. doi: 10.1126/science.1157996
    [11] Lee C, Wei X, Li Q, et al. Elastic and frictional properties of graphene[J]. Physica Status Solidi (B), 2009, 246 (11/12): 2562-2567.
    [12] 胡增荣, 童国权, 张超, 等. 激光烧结石墨烯-铜纳米复合材料性能研究[J]. 强激光与粒子束, 2015, 27: 099001. doi: 10.11884/HPLPB201527.099001

    Hu Zengrong, Tong Guoquan, Zhang Chao, et al. Corrosion resistance and hardness of laser sintered graphene-copper nanocomposites. High Power Laser and Particle Beams, 2015, 27: 099001 doi: 10.11884/HPLPB201527.099001
    [13] Lin D, Suslov S, Ye C, et al. Laser assisted embedding of nanoparticles into metallic materials[J]. Applied Surface Science, 2012, 258 (7): 2289-2296. doi: 10.1016/j.apsusc.2011.09.132
    [14] Sharma P, Dubey A K, Pandey A K. Numerical study of temperature and stress fields in laser cutting of aluminium alloy sheet[J]. Procedia Materials Science, 2014, 5 : 1887-1896. doi: 10.1016/j.mspro.2014.07.510
    [15] Sharma P, Dubey A K, Pandey A K. Numerical study of temperature and stress fields in laser cutting of aluminium alloy sheet[J]. Procedia Materials Science, 2014, 5 : 1887-1896. doi: 10.1016/j.mspro.2014.07.510
    [16] 沈以赴, 顾冬冬, 余承业, 等. 直接金属粉末激光烧结成形过程温度场模拟[J]. 中国机械工程, 2005, 16 (1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200501017.htm

    Shen Yifu, Gu Dongdong, Yu Chengye, et al. Simulation of temperature field in direct metal laser sintering processes. China Mechanical Engineering, 2005, 16 (1): 67-73 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200501017.htm
    [17] Zakharchenko K V, Fasolino A, Los J H, et al. Melting of graphene: from two to one dimension[J]. Journal of Physics: Condensed Matter, 2011, 23 : 202202. doi: 10.1088/0953-8984/23/20/202202
    [18] Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications[J]. MRS Bulletin, 2012, 37 (12): 1273-1281. doi: 10.1557/mrs.2012.203
    [19] Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2011, 43 (2): 316-324.
    [20] Roberts I A, Wang C J, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools and Manufacture, 2009, 49 (12/13): 916-923.
    [21] Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37 (3): 269-277. doi: 10.1016/j.commatsci.2005.07.007
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1379
  • HTML全文浏览量:  378
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-09
  • 修回日期:  2017-12-03
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回