Electric field analysis and optimization of the insulation system in gas-filled spark gap switch of Dragon-Ⅱ accelerator
-
摘要: 气体火花开关作为重要部件被大量地应用于直线感应加速器和Z箍缩等大型脉冲功率装置中。绝缘结构设计不合理会使得气体火花开关中出现局部电场畸变和电荷积聚等现象。在高电压脉冲下长时间或高频次运行时,火花开关中的绝缘子会发生沿面闪络现象,直接影响到脉冲功率装置的正常运行。鉴于此,对气体火花开关中的绝缘结构进行了有限元电场分析,用表面电荷的积聚定性解释了沿面闪络发生的原因。通过对绝缘子的几何结构和电极尺寸的优化设计,有效降低了绝缘子表面和电极表面的电场强度,其中阳极三结合点场强从9.4 kV/mm降至1.5 kV/mm,阴极三结合点场强从2.95 kV/mm降至0.98 kV/mm,绝缘子表面最高场强从10.8 kV/mm降至4.95 kV/mm。优化后的绝缘结构电场分布较为合理,降低了由于表面电荷的积聚而引发沿面闪络的概率。Abstract: In linear induction accelerator, Z-pinch and other large pulsed power devices, the gas-filled spark gap switches as key components are widely used. Unreasonable insulation system may bring excessively high partial electric field and accumulated charges to the gas-filled spark gap switch. The surface flashover would occur while the gas-filled spark gap switches are working under long time or high frequency high voltage pulse. The surface flashover will directly affect the pulsed power devices. Hence, we discussed the mechanism of accumulated charge influence on surface flashover by finite-element electric-field analysis of gas-filled spark gap switch insulation system. The surface electric field strength of insulator and electrodes were reduced by optimizing the structure of insulator and shapes of electrode surface. The results show that: the electric field strength in anode triple junction was decreased from 9.4 kV/mm to 1.5 kV/mm, the electric field strength in cathode triple junction was decreased from 2.95 kV/mm to 0.98 kV/mm, the maximum electric field strength in insulator surface was decreased from 10.8 kV/mm to 4.95 kV/mm. The electric field distribution of optimized insulation system was more reasonable than that of original system, and the probability of surface flashover resulted by accumulated charges would be reduced.
-
表 1 k和n的数值
Table 1. Values of k and n
k+ k- n air 22 22 0.6 freon 36 60 0.4 SF6 44 72 0.4 -
[1] 黎斌. SF6高压电器设计[M]. 3版. 北京: 机械工业出版社, 2009: 79-86.Li Bin. Design of SF6 high voltage apparatus. 3rd ed. Beijing: China Machine Press, 2009: 79-86 [2] 布鲁姆. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008: 67-82.Bluhm H. Pulsed power system: principles and applications. Jiang Weihua, Zhang Chi, translated. Beijing: Tsinghua University Press, 2008: 67-82 [3] 丁伯南, 邓建军, 王华岑, 等. "神龙一号"直线感应电子加速器[J]. 高能物理与核物理, 2005, 29(6): 604-610. doi: 10.3321/j.issn:0254-3052.2005.06.015Ding Bonan, Deng Jianjun, Wang Huacen, et al. Dragon-Ⅰlinear induction electron accelerator. High Energy Physics and Nuclear Physics, 2005, 29(6): 604-610 doi: 10.3321/j.issn:0254-3052.2005.06.015 [4] 邓建军. 直线感应电子加速器[M]. 北京: 国防工业出版社, 2006: 145-193.Deng Jianjun. Linear induction electron accelerator. Beijing: National Defense Industry Press, 2006: 145-193 [5] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28: 010201. doi: 10.11884/HPLPB201628.010201Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-Ⅱaccelerator and its key technology. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201 [6] 王虎, 常家森, 陶风波, 等. 脉冲气体开关用SF6混合气体放电特性的研究[J]. 高压电器, 2011, 47(1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201101013.htmWang Hu, Chang Jiasen, Tao Fengbo, et al. Investigation on discharge characteristics of SF6 gas mixtures used in pulsed gas spark switch. High Voltage Apparatus, 2011, 47(1): 49-52 https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201101013.htm [7] Brian T, Scott D, Dustin L. Effects of laser triggering parameters on runtime and jitter of a gas switch[J]. IEEE Trans Electrical Insulation, 2009, 16(4): 999-1005. doi: 10.1109/TDEI.2009.5211846 [8] 魏浩, 孙凤举, 刘鹏, 等. ±100 kV三电极场畸变气体火花开关[J]. 强激光与粒子束, 2012, 24(4): 881-884. doi: 10.3788/HPLPB20122404.0881Wei Hao, Sun Fengju, Liu Peng, et al. Three-electrode field-distortion gas spark switch. High Power Laser and Particle Beams, 2012, 24(4): 881-884 doi: 10.3788/HPLPB20122404.0881 [9] Sudarshan T, Dougal R. Mechanisms of surface flashover along solid dielectrics in compressed gases: a review[J]. IEEE Trans Electrical Insulation, 1986, 21(5): 727-746. [10] Srivastava K, Zhou Jianping. Surface charging and flashover of spacers in SF6 under impulse voltages[J]. IEEE Trans Electrical Insulation, 1991, 26(3): 428-442. doi: 10.1109/14.85114 [11] John T, Andreas A, Hermann G. Pulsed dielectric-surface flashover in an SF6 environment[J]. IEEE Trans Dielectric and Electrical Insulation, 2007, 35(5): 1580-1587. [12] 李乃一, 彭宗仁, 刘鹏. 特高压SF6气体绝缘套管内屏蔽结构研究[J]. 高电压技术, 2015, 41(11): 3737-3745. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201511034.htmLi Naiyi, Peng Zongren, Liu Peng. Investigation of inner shielding structure for ultra-high voltage SF6 gas-insulated bushing. High Voltage Engineering, 2015, 41(11): 3737-3745 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201511034.htm [13] Martin T, Guenther A, Kristiansen M J C. Martin on pulsed power[M]. New York: Plenum Press, 1996: 135-176. [14] Mansour D-E A, Kojima H, Hayakawa N. Surface charge accumulation and partial discharge activity for small gaps of Electrode/Epoxy interface in SF6 gas[J]. IEEE Trans Dielectric and Electrical Insulation, 2009, 16(4): 1150-1157. doi: 10.1109/TDEI.2009.5211869 [15] Du B, Zhang J, Gao Y. Effect of nanosecond rise time of pulse voltage on the surface charge of epoxy/TiO2 nanocomposites[J]. IEEE Trans Dielectric and Electrical Insulation, 2013, 20(1): 321-328.