Influence of crowbar switch on the current of the"Yingguang -1" device
-
摘要: 主要探讨了夹断开关对“荧光-1”实验装置输出电流特性的影响,利用Pspice软件对其在装置中起到的作用进行功能建模并分析其参数影响,同时开展初步调试实验并分析多组夹断开关导通性能及其同步性对负载电流的影响。仿真与实验结果表明:夹断开关可有效改善负载电流脉宽,可使脉宽从原有3 μs展宽至100 μs,其导通电阻与电感参数均能明显影响电流幅值与脉宽。由实验波形结合仿真可知,夹断开关实际导通电阻约4 mΩ, 两支路耦合电感分别约为60,125 nH,调试结果验证了夹断开关功能建模的正确性及其对脉宽展宽的有效性。Abstract: "Yingguang-1" is a multi-bank program-discharged pulsed power device to investigate the formation, confinement and instability of the high temperature and high density field reversed configuration (FRC) plasma injector for the magnetized target fusion (MTF), which was constructed at the Institute of Fluid Physics (IFP) in 2014. This paper discusses the influence of the crowbar switch on the load current in "Yingguang-1" device by function modeling the crowbar switch with the software Pspice and conducting the preliminary test experiment. The function circuit modeling of the crowbar switch employed in the program-discharged power system, is accurately presented for the first time. The simulation and experiment results show that the crowbar switch can improve the load current's duration effectively and both its closed resistance and inductances can affect the load current's amplitude and duration obviously. As the closing resistance decreases, the current's duration becomes broader, however, the current's amplitude remains the same. As the coupling inductance connecting to the theta pinch main power system decreases, the duration becomes broader. The approximate 4 mΩ closing resistance and 60 nH with 125 nH coupling inductances in the actual crowbar switch have been determined by the simulation based on the measured current. The test results prove that the function modeling of the crowbar switch is correct and it broadens the current duration effectively.
-
表 1 不同导通电阻值对应的电流有效脉宽参数
Table 1. Effective durations of the load current at different closing resistance
closing resistance/mΩ effective duration/μs 0.01 152 0.1 93 1 19 10 6 表 2 不同损耗电阻Rm值对应的负载电流幅值
Table 2. Corresponding amplitudes of the load current at different loss resistance Rm
lossy resistance Rm/mΩ amplitude of Iload/MA 0.1 1.54 1 1.52 10 1.37 100 0.66 -
[1] Gotchev O V, Knauer J P, Chang P Y, et al. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas[J]. Review of Scientific Instruments, 2009, 80: 043504. doi: 10.1063/1.3115983 [2] Lynn A G, Merritt E, Gilmore M, et al. Diagnostics for the plasma liner experiment[J]. Review of Scientific Instruments, 2010, 81: 10E115. doi: 10.1063/1.3478116 [3] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505 [4] Stephen A S, Roger A V. High-gain magnetized inertial fusion[J]. Physical Review Letters, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003 [5] Taccetti J M, Intrator T P, Wurden G A, et al. FRX-L: A field-reversed configuration plasma injector for magnetized target fusion[J]. Review of Scientific Instruments, 2003, 74(10): 4314-4323. doi: 10.1063/1.1606534 [6] Degnan J H, Amdahl D J, Brown A, et al. Experimental and computational progress on liner implosion for compression of FRCs[J]. IEEE Transactions on Plasma Science, 2008, 36(1): 80-91. doi: 10.1109/TPS.2007.913814 [7] Finn J M, Sudan R N. Field-reversed configurations with a component of energetic particles[J]. Nuclear Fusion, 1982, 22(11): 1443-1518. http://www.onacademic.com/detail/journal_1000035869425310_9e68.html [8] Armstrong W T, Linford R K, Lipson J, et al. Field-reversed experiments(FRX) on compact toroids[J]. Physics of Fluids, 1981, 24(11): 2068-2089. doi: 10.1063/1.863303 [9] Siemon R E, Armstrong W T, Bartsch R R. Plasma physics and controlled nuclear fusion research[C]//Proceedings of an International Conference. 1982, 2: 283. [10] Intrator T, Zhang S Y, Degnan J H, et al. A high density field reversed configuration(FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC[J]. Physics of Plasmas, 2004, 11(5): 2580-2585. doi: 10.1063/1.1689666 [11] Kumashiro S, Takahashi T, Ooi M, et al. Review of field-reversed configurations: Physics[J]. J Phys Soc Jpn, 1993, 62: 1539. doi: 10.1143/JPSJ.62.1539 [12] Harris W S, Trask E, Roche T, et al. Ion flow measurements and plasma current analysis in the Irvine Field Reversed Configuration[J]. Physics of Plasmas, 2009, 16: 112509. [13] Ono Y, Morita A, Katsurai M, et al. Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromaks[J]. Physics of Fluids B Plasma Physics, 1993, 5(10): 3691-3701. http://www.researchgate.net/profile/Masaaki_Yamada2/publication/253674661_Experimental_investigation_of_three-dimensional_magnetic_reconnection_by_use_of_colliding_spheromaks/links/54f0860b0cf24eb87940c455.pdf [14] Kawamori E, Ono Y. Effect of ion skin depth on relaxation of merging spheromaks to a field-reversed configuration[J]. Physical Review Letters, 2005, 95: 085003. doi: 10.1103/PhysRevLett.95.085003 [15] Yamada M, Ji H, Hsu S, et al. Study of driven magnetic reconnection in a laboratory plasma[J]. Physics of Plasmas, 1997, 4(5): 1936-1944. doi: 10.1063/1.872336 [16] Binderbauer M W, Guo H Y, Tuszewski M, et al. Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-β compact toroids[J]. Physical Review Letters, 2010, 105: 045003. doi: 10.1103/PhysRevLett.105.045003 [17] Hoffman A L, Guo H Y, Slough J T, et al. The TCS rotating magnetic field FRC current-drive experiment[J]. Fusion Science and Technology, 2002, 41(2): 92-106. doi: 10.13182/FST02-A205 [18] Guo H Y, Hoffman A L, Milroy R D. Rotating magnetic field current drive of high-temperature field reversed configurations with high ζ scaling[J]. Physics of Plasmas, 2007, 14: 112502. [19] Munsat T, Ellison C L, Light A, et al. The Colorado FRC Experiment[J]. Journal of Fusion Energy, 2008, 27(1/2): 82-86. [20] 孙奇志, 方东凡, 刘伟, 等. "荧光-1"实验装置物理设计[J]. 物理学报, 2013, 62: 078407. doi: 10.7498/aps.62.078407Sun Qizhi, Fang Dongfan, Liu Wei, et al. Physical design of the "Ying-Guang 1" device. Acta Physica Sinica, 2013, 62: 078407 doi: 10.7498/aps.62.078407 [21] Grabowski C, Degnan J H, Cavazos T, et al. Development of a high-current low-inductance crowbar switch for FRX-L[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1905-1915. doi: 10.1109/TPS.2002.805405 [22] Intrator T P, Park J Y, Degnan J H, et al. A high-density field reversed configuration plasma for magnetized target fusion[J]. IEEE Transactions on Plasma Science, 2004, 32(1): 152-160. [23] Wurden G A, Intrator T P. Compressional heating of a compact toroid plasma to fusion conditions[R]. DOE F4650.2, 200: 1-75.