留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微通道板的中子探测器γ射线灵敏度

张小东 欧阳晓平 翁秀峰 姜文刚 张建福 谭新建 何军章 魏晨

张小东, 欧阳晓平, 翁秀峰, 等. 基于微通道板的中子探测器γ射线灵敏度[J]. 强激光与粒子束, 2018, 30: 044002. doi: 10.11884/HPLPB201830.170388
引用本文: 张小东, 欧阳晓平, 翁秀峰, 等. 基于微通道板的中子探测器γ射线灵敏度[J]. 强激光与粒子束, 2018, 30: 044002. doi: 10.11884/HPLPB201830.170388
Zhang Xiaodong, Ouyang Xiaoping, Weng Xiufeng, et al. Gamma ray sensitivity of neutron detector based on microchannel plate[J]. High Power Laser and Particle Beams, 2018, 30: 044002. doi: 10.11884/HPLPB201830.170388
Citation: Zhang Xiaodong, Ouyang Xiaoping, Weng Xiufeng, et al. Gamma ray sensitivity of neutron detector based on microchannel plate[J]. High Power Laser and Particle Beams, 2018, 30: 044002. doi: 10.11884/HPLPB201830.170388

基于微通道板的中子探测器γ射线灵敏度

doi: 10.11884/HPLPB201830.170388
基金项目: 

国家自然科学基金项目 11375142

详细信息
    作者简介:

    张小东(1981—),男,博士研究生,副研究员,现从事脉冲辐射测量;zhangxd16899@163.com

  • 中图分类号: TL816.3

Gamma ray sensitivity of neutron detector based on microchannel plate

  • 摘要: 研制了一种基于微通道板的超快脉冲中子探测器,对其γ射线灵敏度进行了理论和实验研究。建立了探测器的γ射线灵敏度理论计算模型,利用蒙特卡罗方法模拟计算了不同能量γ射线在不同厚度聚乙烯靶中产生的出射电子能谱和出射角度分布,并结合经验公式计算了单个电子在微通道板(MCP)孔道中产生的二次电子产额,最后得到了探测器的γ射线灵敏度,结果表明当聚乙烯靶厚度大于某一值时,γ射线灵敏度基本相同。利用西北核技术研究所的标准γ射线放射源对探测器的γ射线灵敏度进行了实验标定,实验结果与理论计算结果一致。
  • 图  1  基于微通道板的超快脉冲中子探测器结构图

    Figure  1.  Structure of the ultrafast pulse neutron detector based on MCP

    图  2  1.25 MeV γ射线在不同厚度聚乙烯中产生的电子能谱

    Figure  2.  Energy spectra of electrons produced from different thickness'polyethylene by 1.25 MeV γ-ray

    图  3  1.25 MeV γ射线在不同厚度聚乙烯中产生的电子出射角度分布

    Figure  3.  Angle distribution of electrons produced from different thickness'polyethylene by 1.25 MeV γ-ray

    图  4  γ射线在不同厚度聚乙烯中产生的电子能谱

    Figure  4.  Energy spectra of electrons produced from different thickness'polyethylene by 0.662 MeV γ-ray

    图  5  0.662 MeV γ射线在不同厚度聚乙烯中产生的电子出射角度分布

    Figure  5.  Angle distribution of electrons produced from different thickness'polyethylene by 0.662 MeV γ-ray

    图  6  不同能量电子产生的二次电子产额

    Figure  6.  Yields of secondary electrons produced by different energyelctrons

    图  7  单个出射电子产生的二次电子产额

    Figure  7.  Yields of secondary electrons produced by single emitted electron

    图  8  探测器的γ射线灵敏度理论计算结果

    Figure  8.  Theoretical calculation results of the detector's γ-ray sensitivity

    图  9  γ射线灵敏度实验测量示意图

    Figure  9.  Schematic of measuring γ-ray sensitivity

    表  1  1.25 MeV γ射线灵敏度实验结果和理论计算结果

    Table  1.   Experimental results and theoretical calculation results of 1.25 MeV γ-ray

    thickness/mm total current/nA γ-ray flux rate/(cm-2·s-1) total γ-ray sensitivity/(C·cm2) current of background/nA γ-ray sensitivity of background/(C·cm2) experimental γ-ray sensitivity/(C·cm2) theoretical γ-ray sensitivity/(C·cm2)
    1.0 59.87 6.12×107 9.78×10-16 25.77 4.21×10-16 5.57×10-16 5.86×10-16
    2.0 82.18 6.12×107 1.34×10-15 25.77 4.21×10-16 9.20×10-16 9.02×10-16
    3.0 91.35 6.12×107 1.49×10-15 25.77 4.21×10-16 1.07×10-15 1.05×10-15
    4.0 91.07 6.12×107 1.49×10-15 25.77 4.21×10-16 1.07×10-15 1.12×10-15
    5.0 92.24 6.12×107 1.51×10-15 25.77 4.21×10-16 1.08×10-15 1.12×10-15
    下载: 导出CSV

    表  2  0.662 MeV γ射线灵敏度实验结果和理论计算结果

    Table  2.   Experimental results and theoretical calculation results of 0.662 MeV γ-ray

    thickness/mm total current/nA γ-ray flux rate/(cm-2·s-1) total γ-ray sensitivity/(C·cm2) current of background/nA γ-ray sensitivity of background/(C·cm2) experimental γ-ray sensitivity/(C·cm2) theoretical γ-ray sensitivity/(C·cm2)
    1.0 1.95 1.33×106 1.47×10-15 0.96 7.22×10-16 7.48×10-16 7.17×10-16
    2.0 2.01 1.33×106 1.51×10-15 0.96 7.22×10-16 7.88×10-16 7.67×10-16
    3.0 2.05 1.33×106 1.54×10-15 0.96 7.22×10-16 8.18×10-16 7.62×10-16
    4.0 2.11 1.33×106 1.59×10-15 0.96 7.22×10-16 8.67×10-16 7.64×10-16
    5.0 2.14 1.33×106 1.61×10-15 0.96 7.22×10-16 8.88×10-16 7.55×10-16
    下载: 导出CSV
  • [1] 傅依备, 杨建国, 江文勉, 等. 惯性约束聚变与强激光技术[C]. 绵阳: 中国工程物理研究院核物理与化学研究所, 1990: 146-151.

    Fu Yibei, Yang Jianguo, Jiang Wenmian, et al. Inertial confinement fusion and high power laser technology. Mianyang: Institute of Nuclear Physics and Chemistry, CAEP, 1990: 146-151
    [2] 张小东. 基于反冲质子法的MCP超快脉冲中子探测器技术研究[D]. 西安: 西北核技术研究所, 2017: 11-30.

    Zhang Xiaodong. Technology of the ultrafast pulse neutron detector based on recoil proton and MCP. Xi'an: Northwest Institute of Nuclear Technology, 2017: 11-30
    [3] 潘京生. 低噪声高分辨力微通道板研制[D]. 南京: 南京理工大学, 2008: 5-8.

    Pan Jingsheng. The developments of low noise high resolution microchannel plate. Nanjing: Nanjing University of Science and Technology, 2008: 5-8
    [4] 胡松. 微通道板光电倍增管性能研究[D]. 南京: 南京理工大学, 2009: 7.

    Hu Song. Performances research of microchannel plate photomultiplier. Nanjing: Nanjing University of Scienee and Technology, 2009: 7
    [5] 黄展常, 杨建伦, 李国栋. 波形比较法测量MCP-PMT对强窄脉冲的线性输出[J]. 原子能科学技术, 2016, 50(3): 553-557. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201603027.htm

    Huang Zhanchang, Yang Jianlun, Li Guodong. Measurement of MCP-PMT's linear output for narrow intensive pulse based on waveform comparison method. Atomic Energy Science and Technology, 2016, 50(3): 553-557 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201603027.htm
    [6] Dewald E L, Campbell K M, Turner R E, et al. Dante soft X-ray power diagnostic for National Ignition Facility[J]. Review of Scientific Instruments, 2004, 75(10): 3759-3761.
    [7] Glenn F. Radiation detection and measurement[M]. New York: John Wiley&Sons, Inc, 1999: 48-53.
    [8] 刘腊群, 刘大刚, 王学琼, 等. 三维PIC数值模拟中二次发射的实现[J]. 强激光与粒子束, 2012, 24(8): 1980-1984. doi: 10.3788/HPLPB20122408.1980

    Liu Laqun, Liu Dagang, Wang Xueqiong, et al. Implementation of secondary emission in three dimensional PIC numerical simulation. High Power Laser and Particle Beams, 2012, 24(8): 1980-1984 doi: 10.3788/HPLPB20122408.1980
    [9] 毛世峰. 扫描电子显微学中二次电子产生的Monte Carlo模拟[D]. 合肥: 中国科学技术大学, 2009: 45.

    Mao Shifeng. Monte Carlo simulation study on the generation of secondary electrons in scanning electron microscopy. Hefei: University of Science and Technology of China, 2009: 45
    [10] 彭玲玲. 微通道板薄膜打拿极二次电子发射特性研究[D]. 长春: 长春理工大学, 2014: 38-42.

    Peng Lingling. Investigation of microchannel plate film dynode and secondary electron emission characteristics. Changchun: Changchun University of Science and Technology, 2014: 38-42
    [11] 吴治华, 赵国庆, 陆福全, 等. 原子核物理实验方法[M]. 北京: 原子能出版社, 1994: 472-474.

    Wu Zhihua, Zhao Guoqing, Lu Fuquan, et al. Experimental methods of nuclear physics. Beijing: Atomic Energy Press, 1994: 472-474
    [12] 张小东. 基于气体闪烁体的裂变中子总数测量技术研究[D]. 西安: 西北核技术研究所, 2010: 17-18.

    Zhang Xiaodong. Technology of measuring total number of fission neutron based on gas scintillator. Xi'an: Northwest Institute of Nuclear Technology, 2010: 17-18
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1156
  • HTML全文浏览量:  286
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-28
  • 修回日期:  2018-01-23
  • 刊出日期:  2018-04-15

目录

    /

    返回文章
    返回