留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wideband compressed spectrum sensing based on modified sparsity adaptive matching pursuit algorithm

Jiao Chuanhai Li Yongcheng

Hu Chundong, Zhang Weitang, Xu Yongjian, et al. Analysis of shine-through of EAST neutral beam[J]. High Power Laser and Particle Beams, 2015, 27: 126001. doi: 10.11884/HPLPB201527.126001
Citation: Jiao Chuanhai, Li Yongcheng. Wideband compressed spectrum sensing based on modified sparsity adaptive matching pursuit algorithm[J]. High Power Laser and Particle Beams, 2018, 30: 033203. doi: 10.11884/HPLPB201830.170395
胡纯栋, 张为堂, 许永建, 等. EAST中性束穿透损失分析[J]. 强激光与粒子束, 2015, 27: 126001. doi: 10.11884/HPLPB201527.126001
引用本文: 焦传海, 李永成. 基于改进的稀疏度自适应匹配追踪算法的宽带压缩频谱感知[J]. 强激光与粒子束, 2018, 30: 033203. doi: 10.11884/HPLPB201830.170395

Wideband compressed spectrum sensing based on modified sparsity adaptive matching pursuit algorithm

Funds: 

State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System Open Foundation CEMEE2015Z0203B

Natural Science Foundation of Anhui Province 1608085QF143

More Information
    Author Bio:

    Jiao Chuanhai(1983—), male, PhD, engaged in wireless signal processing and cognitive radio research; jiao_chuanhai@126.com

基于改进的稀疏度自适应匹配追踪算法的宽带压缩频谱感知

doi: 10.11884/HPLPB201830.170395
基金项目: 

State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System Open Foundation CEMEE2015Z0203B

Natural Science Foundation of Anhui Province 1608085QF143

详细信息
  • 中图分类号: TN911

  • 摘要: 针对在实际宽带压缩频谱感知中难以预先获知宽带频谱稀疏度的问题,提出一种改进的稀疏度自适应匹配追踪(modified sparsity adaptive matching pursuit, MSAMP)算法,该算法在支撑集选择过程中对稀疏度进行了预估计。结合序贯压缩检测技术,给出了一种基于该算法的多认知用户合作场景下的宽带压缩频谱感知方法,理论分析和实验仿真结果表明,该方法可在频谱稀疏度先验知识缺少的情况下,有效提高宽带频谱感知性能。
  • Figure  1.  Scene model of central cooperative sensing

    Figure  2.  Framework scheme of proposed method

    Figure  3.  ROC curves of different methods with Kr=Ks=16

    Figure  4.  ROC curves of different methods with Kr=32, Ks=16

    Figure  5.  Performance of different methods varies with RSN

    Figure  6.  Average running time of different algorithms varies with sparsity ratio

  • [1] Haykin S, Thomson J, Reed H. Spectrum sensing for cognitive radio[J]. Proceedings of the IEEE, 2009, 97 (5): 849-877. doi: 10.1109/JPROC.2009.2015711
    [2] Jiao Licheng, Yang Shuyuan, Liu Fang, et al. Development and prospect of compressive sensing[J]. Acta Electronica Sinica, 2011, 39 (7): 1651-1662.
    [3] Tian Z, Giannakis G B. Compressed sensing for wideband cognitive radios[C]//Proc of IEEE International Conference on Acoustics, Speech and Signal. 2007: 1357-1360.
    [4] Yen C P, Tsai Y, Wang Xiaodong. Wideband spectrum sensing based on sub-Nyquist sampling[J]. IEEE Trans Signal Processing, 2013, 61 (12): 3028-3040. doi: 10.1109/TSP.2013.2251342
    [5] Pan Lebing, Xiao Shiliang, Yuan Xiaobing. Wideband power spectrum sensing for cognitive radios based on sub-Nyquist sampling[J]. Wireless Personal Communications, 2015, 84 (2): 919-933. doi: 10.1007/s11277-015-2668-8
    [6] Akyildz I F, Lo B F, Balakrishnan R. Cooperative spectrum sensing in cognitive radio networks: A survey[J]. Physical Communication, 2011, 4 (1): 40-62. doi: 10.1016/j.phycom.2010.12.003
    [7] Arroyo-Valles R, Maleki S, Leus G. Distributed wideband spectrum sensing for cognitive radio networks[C]//Proc of IEEE International Conference on Acoustics, Speech and Signal. 2014: 7263-7267.
    [8] Do TT, Lu G, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//42nd Asilomar Conference on Signals, Systems and Computers. 2008: 581-587.
    [9] NeedellD, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26 (3): 301-321. doi: 10.1016/j.acha.2008.07.002
    [10] Wang Yue, Tian Zhi, Feng Chunyan. Sparsity order estimation and its application in compressive spectrum sensing for cognitive radios[J]. IEEE Trans Wireless Communications, 2012, 11 (6): 2116-2125. doi: 10.1109/TWC.2012.050112.110505
    [11] Wu Honglin, Wang Shu. Adaptive sparsity matching pursuit algorithm for sparsity reconstruction[J]. IEEE Signal Processing Letters, 2012, 19 (8): 471-474. doi: 10.1109/LSP.2012.2188793
    [12] Wang Weigang, Yang Zhen, Gu Bin, et al. Adaptive compressed spectrum sensing based on optimized measurement matrix[J]. Journal on Communications, 2014, 35 (8): 33-39.
    [13] Zhao Zhijin, Hu Junwei. A sparsity adaptive algorithm for wideband compressive spectrum sensing[J]. Telecommunications Science, 2014, 30 (3): 99-104.
    [14] Wang Jian, Kwon S, Li Ping, et al. Recovery of sparsity signals via generalized orthogonal matching pursuit: A new analysis[J]. IEEE Trans Signal Processing, 2016, 64 (4): 1076-1089. doi: 10.1109/TSP.2015.2498132
    [15] Malioutov D M, Sanghavi S R, Willsky A S. Sequential compressed sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (2): 435-444. doi: 10.1109/JSTSP.2009.2038211
    [16] Zhang Henglong, Song Xiaoqin, Zhu Yonggang, et al. Spectrum sensing algorithm based on variable step-size sequential compressed sampling[J]. Journal of Data Acquisition and Processing, 2015, 30 (4): 839-847.
    [17] Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing[J]. IEEE Trans Information Theory, 2010, 56 (4): 1982-2001. doi: 10.1109/TIT.2010.2040894
    [18] Yang Cheng, Feng Wei, Feng Hui, et al. A sparsity adaptive subspace pursuit algorithm for compressive sampling[J]. Acta Electronica Sinica, 2010, 38 (8): 1914-1917.
    [19] Tian Wenbiao, Fu Zheng, Rui Guosheng. Blind adaptive matching pursuit algorithm for signal reconstruction based on sparsity trial and error[J]. Journal on Communications, 2013, 34 (4): 180-186.
  • 加载中
图(6)
计量
  • 文章访问数:  1328
  • HTML全文浏览量:  262
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2017-11-13
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回