留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳光纤直径精细控制技术

卫正统 侯德亭 苗劲松 杨华 苗心向 宋章启

卫正统, 侯德亭, 苗劲松, 等. 微纳光纤直径精细控制技术[J]. 强激光与粒子束, 2018, 30: 074104. doi: 10.11884/HPLPB201830.170403
引用本文: 卫正统, 侯德亭, 苗劲松, 等. 微纳光纤直径精细控制技术[J]. 强激光与粒子束, 2018, 30: 074104. doi: 10.11884/HPLPB201830.170403
Wei Zhengtong, Hou Deting, Miao Jingsong, et al. Precise control of optical microfiber diameter[J]. High Power Laser and Particle Beams, 2018, 30: 074104. doi: 10.11884/HPLPB201830.170403
Citation: Wei Zhengtong, Hou Deting, Miao Jingsong, et al. Precise control of optical microfiber diameter[J]. High Power Laser and Particle Beams, 2018, 30: 074104. doi: 10.11884/HPLPB201830.170403

微纳光纤直径精细控制技术

doi: 10.11884/HPLPB201830.170403
基金项目: 

国家自然科学基金项目 61605249

河南省科技厅科技攻关项目 152102210012

信息工程大学新兴研究方向 2705020601

详细信息
    作者简介:

    卫正统(1987-), 男,博士,从事光纤传感技术研究;weizhengtong1987@126.com

    通讯作者:

    宋章启(1973-), 男,教授,从事光纤信息技术研究;songzhangqi@126.com

  • 中图分类号: TP256

Precise control of optical microfiber diameter

  • 摘要: 为实时监测高通量激光系统中洁净情况,提出了基于微纳光纤的微量污染物传感技术。为消除微纳光纤外形结构误差对测试结果影响,首先理论研究了微纳光纤拉制过程,得到了加热长度和拉伸长度误差和引入微纳光纤外形结构偏差的关系,接着通过理论仿真得到了不同拉制参数条件下,微纳光纤外形结构误差情况,并得到了拉制长度为10 mm、直径为1.5 μm的最优制备参数,最后通过实测微纳光纤外形结构验证了理论仿真结果。实验结果表明,通过优化微纳光纤拉制参数可实现其外形结构的精细控制,为微纳光纤用于微量污染物传感工程实用化奠定基础。
  • 图  1  微纳光纤制备系统

    Figure  1.  Illustration of the optical microfiber(OM) fabrication system

    1. linear guide rail; 2. linear motor; 3. optical fiber clamping device; 4. micro heating head; 5. ACS controller; 6. programmable DC power supply; 7. control software; 8. microscope; 9. wind shield

    图  2  加热长度误差为0.3 mm时微纳光纤直径偏差

    Figure  2.  OM diameter fluctuation when error of heating length is 0.3 mm

    图  3  拉伸长度误差为3 mm时微纳光纤直径偏差

    Figure  3.  OM diameter fluctuatuation when error of stretching length is 3 mm

    图  4  拉伸长度误差为3 mm,加热长度误差为0.3 mm时微纳光纤直径偏差

    Figure  4.  OM diameter fluctuatuion when error of stretching length is 3 mm and the error of heating length is 0.3 mm

    图  5  微纳光纤外形实测结果与理想结果对比

    Figure  5.  Measured structure of fabricated OM and the designed one

  • [1] Neauport J, Cormont P, Lamaignère L, et al. Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm[J]. Optics Communication, 2008, 281: 3802-3805. doi: 10.1016/j.optcom.2008.03.031
    [2] Bien-Aimé K, Belin C, Gallais L, et al. Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm[J]. Optics Express, 2009, 17(21): 18703-18713. doi: 10.1364/OE.17.018703
    [3] 於海武, 郑万国, 唐军, 等. 高功率激光放大器片腔洁净度实验研究[J]. 强激光与粒子束, 2001, 13(3): 272-276. http://www.hplpb.com.cn/article/id/235

    Yu Haiwu, Zheng Wanguo, Tang Jun, et al. Investigation of slab cavity cleanliness of high power laser amplifiers. High Power Laser and Particle Beams, 2001, 13(3): 272-276 http://www.hplpb.com.cn/article/id/235
    [4] 程晓锋, 苗心向, 王洪彬, 等. 神光-Ⅲ主机激光装置片状放大器洁净控制进展[J]. 强激光与粒子束, 2012, 24(1): 1-2. http://www.hplpb.com.cn/article/id/5799

    Cheng Xiaofeng, Miao Xinxiang, Wang Hongbin, et al. Development on cleanliness control of slab amplifiers for Shenguang-Ⅲ laser driver. High Power Laser and Particle Beams, 2012, 24(1): 1-2 http://www.hplpb.com.cn/article/id/5799
    [5] Larsson E M, Malin E, Edvardsson M, et al. A combined nanoplasmonic and electrodeless quartz crystal microbalance setup[J]. Review of Scientific Instruments, 2009, 80: 125105. doi: 10.1063/1.3265321
    [6] 苗心向, 袁晓东, 吕海兵, 等. 基于微纳光纤的气溶胶探测应用技术[J]. 强激光与粒子束, 2014, 26: 114103. doi: 10.11884/HPLPB201426.114103

    Miao Xinxiang, Yuan Xiaodong, Lü Haibin, et al. Contamination particles sensor based on microfiber. High Power Laser and Particle Beams, 2014, 26: 114103 doi: 10.11884/HPLPB201426.114103
    [7] Wei Zhengtong, Song Zhangqi, Zhang Xueliang, et al. Microparticle detection based on optical microfibers[J]. IEEE Photonics Technology Letters, 2013, 25(6): 568-571. doi: 10.1109/LPT.2013.2241422
    [8] Wei Zhengtong, Song Zhangqi, Yu Yang, et al. Inline contaminants detection with optical microfiber in high-power laser system[C]//Proc of SPIE. 2013, 8911: 891104.
    [9] Gilberto Brambilla. Optical fibre nanowires and microwires: a review[J]. Journal of Optics, 2010, 12: 043001. doi: 10.1088/2040-8978/12/4/043001
    [10] Xu Fei, Gilberto Brambilla, Feng Jing, et al. A microfiber Bragg grating based on a microstructured rod: a proposal[J]. IEEE Photonics Technology Letters, 2010, 22(4): 218-220. doi: 10.1109/LPT.2009.2037515
    [11] Zhang Lei, Gu Fuxing, Lou Jingyi, et al. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film[J]. Optics Express, 2008, 16(17): 13349-13353. doi: 10.1364/OE.16.013349
    [12] Wei Zhengtong, Song Zhangqi, Song Rui, et al. Measurement of the optical absorption coefficient for liquid based on optical microfiber[J]. Optik, 2014, 125(12): 2880-2884. doi: 10.1016/j.ijleo.2013.11.048
    [13] Wei Zhengtong, Song Zhangqi, Zhang Xueliang, et al. In-line fluidic absorption coefficient sensor based on optical microfiber[C]//Proc of SPIE. 2012, 8421: 842183.
    [14] Birks T A, Li Youwei. The shape of fiber tapers[J]. Journal of Lightwave Technology, 1992, 10(4): 432-438. doi: 10.1109/50.134196
  • 加载中
图(5)
计量
  • 文章访问数:  1636
  • HTML全文浏览量:  353
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-19
  • 修回日期:  2018-03-05
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回