Fabrication of flexible graphene strain sensor based on PET substrate
-
摘要: 针对PET塑料耐温性能较差,与标准微纳加工工艺不兼容等问题,开发了面向PET塑料基底材料的光刻、镀膜等微纳加工工艺。通过CVD生长、转移等方式将单层石墨烯薄膜附着于0.5 mm厚PET基底,并采用微纳加工的方式制备了柔性石墨烯压阻应变计。工艺结果表明,本研究所提出的加工方法适用于以PET塑料作为衬底材料的柔性微纳器件的制作。通过对PET塑料衬底施加应变并测量石墨烯的电阻变化率,可计算出石墨烯的压阻应变系数约为1.3。Abstract: In view of the incompatibility of PET material with the standard microfabrication due to its low intolerance to high temperature, an effective fabrication process including lithography, metal deposition and reactive ion etching have been developed which paves the way for direct micro processing on PET. Based on such a method, thin film graphene layer was grown and transferred to 0.5 mm thick PET substrate and the graphene strain sensor was successfully fabricated. According to the measurement results, the piezoresistive gauge factor of the graphene can be estimated about 1.3, which is in good accordance with the value given in literature. Such fabrication method can also be applied in the domain where flexible micro devices are required.
-
Key words:
- graphene /
- strain sensor /
- PET /
- micro-fabrication
-
-
[1] 尹福炎. 电阻应变片发展历史的回顾——纪念电阻应变片诞生70周年(1938—2008)[J]. 衡器, 2009, 38(4): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HEQI200904018.htmYin Fuyan. Review of development history of resistance strain gauges. Weighing Instrument, 2009, 38(4): 46-52 https://www.cnki.com.cn/Article/CJFDTOTAL-HEQI200904018.htm [2] 邓爱国, 李雅范, 戚彩梦. 水轮机转轮应力分布规律及降应力措施研究[J]. 上海大中型电机, 2009(2): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SHDD200902016.htmDeng Aiguo, Li Yafan, Qi Caimeng. Study on stress distribution law and stress reduction measures of hydraulic turbine runner. Shanghai Medium and Large Electrical Machines, 2009(2): 45-49 https://www.cnki.com.cn/Article/CJFDTOTAL-SHDD200902016.htm [3] 佟向鹏. 陀螺马达轴承预紧力分析[J]. 测控技术, 2013, 32(1): 137-139. https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201301042.htmTong Xiangpeng. Analysis on pre-tightening force of gyro motor bearing. Measurement & Control Technology, 2013, 32(1): 137-139 https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201301042.htm [4] Novoselov K S, Fal'Ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192. doi: 10.1038/nature11458 [5] 林泉, 陈新亮, 倪牮, 等. PET柔性衬底上生长绒面ZnO-TCO薄膜及其在薄膜太阳电池中的应用[J]. 光电子·激光, 2011(5): 714-717. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201105019.htmLin Quan, Chen Xinliang, Ni Jian, et al. Surface textured ZnO-TCO thin films grown on PET flexible substrates and the applications in thin-film solar cells. Journal of Optoelectronics Laser, 2011(5): 714-717 https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201105019.htm [6] Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films[J]. Nano Letters, 2010, 10(2): 490. doi: 10.1021/nl903272n [7] Hill E W, Vijayaragahvan A, Novoselov K. Graphene sensors[J]. IEEE Sensors Journal, 2011, 11(12): 3161-3170. doi: 10.1109/JSEN.2011.2167608 [8] 葛雯, 吕斌. Cu箔衬底上石墨烯纳米结构制备[J]. 材料科学与工程学报, 2013, 31(4): 489-494. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201304004.htmGe Wen, Lü Bin. Growth of graphene nanostructures on Cu foils. Journal of Materials Science and Engineering, 2013, 31(4): 489-494 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201304004.htm [9] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97: 187401.