留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阳极杆箍缩二极管的理论模型及物理特性

耿力东 谢卫平 袁建强 王敏华 曹龙博 付佳斌 赵小明 何泱

耿力东, 谢卫平, 袁建强, 等. 阳极杆箍缩二极管的理论模型及物理特性[J]. 强激光与粒子束, 2018, 30: 085003. doi: 10.11884/HPLPB201830.170425
引用本文: 耿力东, 谢卫平, 袁建强, 等. 阳极杆箍缩二极管的理论模型及物理特性[J]. 强激光与粒子束, 2018, 30: 085003. doi: 10.11884/HPLPB201830.170425
Geng Lidong, Xie Weiping, Yuan Jianqiang, et al. Theoretical modeling and physical characteristics of rod-pinch diode[J]. High Power Laser and Particle Beams, 2018, 30: 085003. doi: 10.11884/HPLPB201830.170425
Citation: Geng Lidong, Xie Weiping, Yuan Jianqiang, et al. Theoretical modeling and physical characteristics of rod-pinch diode[J]. High Power Laser and Particle Beams, 2018, 30: 085003. doi: 10.11884/HPLPB201830.170425

阳极杆箍缩二极管的理论模型及物理特性

doi: 10.11884/HPLPB201830.170425
基金项目: 

国家自然科学基金项目 11605183

详细信息
    作者简介:

    耿力东(1981-), 男, 博士研究生, 主要研究闪光照相技术; glidong809@126.com

    通讯作者:

    何泱(1986-), 男, 博士, 主要从事脉冲功率技术研究; heyang@caep.cn

  • 中图分类号: TL929

Theoretical modeling and physical characteristics of rod-pinch diode

  • 摘要: 闪光X射线源是获得高凝聚态物质内部物理图像的重要手段,阳极杆箍缩二极管(RPD)作为其重要组成部分之一,直接影响闪光X射线源照相质量。研究RPD物理特性对二极管物理结构优化设计及实验调试具有重要意义。分析了RPD空间电荷限制、弱箍缩和磁绝缘阶段物理模型。基于PIC模拟技术,编写了计算程序,研究了RPD不同阶段的电子电流、离子电流及电子束箍缩物理特性。通过理论分析,获得了特定几何结构RPD物理模型修正系数及各个阶段离子电流与电子电流比,验证了粒子模拟代码的有效性。模拟结果表明:空间电荷限制阶段,粒子模拟结果与双极性流计算结果一致;在弱箍缩和磁绝缘阶段,粒子模拟得到的总电流与磁绝缘模型计算结果一致,且与文献给出的经验拟合表达式计算结果一致;磁绝缘阶段离子电流与电子电流之比与电压和二极管几何结构相关,给出了离子电子电流比增大系数η与电压和阴阳极半径比的关系,该系数受电子、离子在不同结构二极管渡越时间的影响,随电压和阴阳极半径比增加而逼近恒定值。
  • 图  1  RPD物理结构

    Figure  1.  Schematic illustrating the rod-pinch diode(RPD)

    图  2  RPD的I-V特性(rC=6.0 mm, L=3.0 mm, rA=0.75 mm, Lrod=16.0 mm)

    Figure  2.  The I-V characteristic of the RPD when rC=6.0 mm, L=3.0 mm, rA=0.75 mm, Lrod=16.0 mm

    图  3  经验公式与粒子模拟结果

    Figure  3.  Comparison of diode current between the PIC simulation and empirical formula calculation

    图  4  不同电压下Ie/ILBrC/rA关系

    Figure  4.  Ie/ILB varies with rC/rA under different voltage

    图  5  不同电压下Ii/IerC/rA关系

    Figure  5.  Ii/Ie varies with rC/rA under different voltage

    图  6  仅考虑电子发射时的二极管物理特性

    Figure  6.  The physical characteristics of the RPD, only electron emission is considered in PIC simulation

    图  7  考虑电子离子时二极管物理特性

    Figure  7.  The physical characteristics of the RPD, considering electron and ion emissions in PIC simulation

    图  8  式(20)中系数η与电压的关系(rC=6.0 mm, L=3.0 mm, rA=0.75 mm, Lrod=16.0 mm)

    Figure  8.  Relationship between the coefficient η in Eq.(20) and voltage for rC=6.0 mm, L=3.0 mm, rA=0.75 mm, Lrod=16.0 mm

    图  9  离子电子电流比增大系数ηrC/rArA的关系

    Figure  9.  The coefficient η changes with rC/rA and rA

  • [1] Dane V M, Don M, Gerald S. Real time X-ray diffraction measurements of shocked polycrystalline tin and aluminum[J]. Review of Scientific Instruments, 2008, 79: 113904.
    [2] Bennett N, Crain M D, Darryl W D, at el. Shot reproducibility of the self-magnetic-pinch diode at 4.5 MV[J]. Physical Review Special Topics Accelerators and Beams, 2014, 17: 050401.
    [3] Nichelle B, Dale R W, Timothy J W, et al. The impact of plasma dynamics on the self-magnetic-pinch diode impedance[J]. Physics of Plasma, 2015, 22: 033113. doi: 10.1063/1.4916062
    [4] Bertrand E, Virgile B, Michel C, et al. Study and optimization of negative polarity rod pinch diode as flashradiography source at 4.5 MV[J]. Physics of Plasma, 2012, 19: 093104.
    [5] 高屹, 邱爱慈, 吕敏, 等. Rod-pinch二极管箍缩特性的数值模拟[J]. 核技术, 2010, 33(8): 575-579. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201008005.htm

    Gao Yi, Qiu Ai Ci, Lü Min, et al. Numerical simulation of beam-pinching characteristics in a rod-pinch diode. Nuclear Techniques, 2010, 33(8): 575-579 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201008005.htm
    [6] Gao Yi, Qiu Aici, Zhang Zhong, et al. Research on pinching characteristics of electron beams emitted from different cathode surfaces of a rod-pinch diode[J]. Physics of Plasma, 2010, 17: 073108. doi: 10.1063/1.3455536
    [7] Champeny P, Spence P. Pulsed 1480-A, 9 MV pulsed electron accelerator with an intensely focused beam[J]. IEEE Trans Nucl Sci, 1975, 22(3): 970-974. doi: 10.1109/TNS.1975.4327786
    [8] Maenchen J E, Menge P R, Rovang D C, et al. Intense electron beamfor radiography[C]//Proc 12th Int Conf High Current Electronics. 2000.
    [9] Swanekamp A B, Cooperstein G, Schumer J W, et al. Evaluation of selfmagnetically pinched diodes up to 10 MV as high resolution flash X-ray sources[J]. IEEE Trans Plasma Sci, 2004, 32(5): 2004-2016.
    [10] Birrel A R, Edwards R D, Goldsack T J, et al. New development in paraxial radiographic diode technology for focusing intense relativistic electronbeam[J]. IEEE Trans Plasma Sci, 2000, 28(5): 1660-1163.
    [11] Mazarakis M G, Poukey J W, Rovang D C, et al. Pencil like mm-size electron beams produced with linera inductive voltage adders[J]. Appl Phys Lett, 1997, 70(7): 832-834.
    [12] Commisso R, Cooperstein G, Hinshelwood D, et al. Experimental evaluation of a megavolt rod-pinch diode as a radiography source[J]. IEEE Trans Plasma Sci, 2002, 30(1): 338-356.
    [13] 王宇, 李洪涛, 王文斗, 等. 1.2 MV "天蝎"X光机杆箍缩二极管性能模拟[J]. 强激光与粒子束, 2015, 27: 095005. doi: 10.11884/HPLPB201527.095005

    Wang Yu, Li Hongtao, Wang Wendou, et al. Simulation study on performances of rod-pinch diode on 1.2 MV X-ray generator Scorpio. High Power Laser and Particle Beams, 2015, 27: 095005 doi: 10.11884/HPLPB201527.095005
    [14] 马勋, 袁建强, 祁康成, 等. 影响阳极杆箍缩二极管窗口前向辐射剂量的因素[J]. 强激光与粒子束, 2016, 28: 050201. doi: 10.11884/HPLPB201628.050201

    Ma Xun, Yuan Jianqiang, Qi Kangcheng, et al. Factors affecting rod pinch diode dose. High Power Laser and Particle Beams, 2016, 28: 050201 doi: 10.11884/HPLPB201628.050201
    [15] Cooperstein G, Boller J R, Comisso R J, et al. Theoretical modeling and experimental characterization of a rod-pinch diode[J]. Phys Plasmas, 2001, 8(10): 4618-4635.
    [16] 张鹏飞, 苏兆锋, 孙剑锋, 等. 阳极干箍缩二极管产生X射线能谱的模拟计算[J]. 物理学报, 2011, 60: 100204. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201110006.htm

    Zhang Pengfei, Su Zhaofeng, Sun Jianfeng, et al. Numerical investigation of X-ray energy spectrum of rod-pinch diode. Acta Physica Sinica, 2011, 60: 100204 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201110006.htm
    [17] Litwin C, Rosner R. Relativistic space-charge-limited bipolar flow[J]. Phys Rev E, 1998, 58(1): 1163.
    [18] John M G. Relativistic Brillouin flow in the high ν/γ diode[J]. Journal of Applied Physics, 1975, 46(7): 2946-2955.
    [19] Goldstein S A, Davidson R C, Siambis J G, et al. Focused flow model of relativistic diodes[J]. Physical Review Letters, 1974, 33(25): 1471-1474.
    [20] Swanekamp S B, Commisso R J, Cooperstein G, et al. Particle in cell simulation of high power cylindrical electron beam diodes[J]. Physics of Plasmas, 2000, 7(12): 5214-5222.
    [21] Shyke A G, Roswell L. Ion induced pinch and enhancement of ion current by pinched electron flow in relativistic diodes[J]. Physcal Review Letters, 1975, 35(16): 1079-1082.
  • 加载中
图(9)
计量
  • 文章访问数:  1310
  • HTML全文浏览量:  330
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-01
  • 修回日期:  2018-03-25
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回