留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体诊断用Wolter型X射线显微镜的设计

李亚冉 谢青 陈志强 忻秋琪 穆宝忠

李亚冉, 谢青, 陈志强, 等. 激光等离子体诊断用Wolter型X射线显微镜的设计[J]. 强激光与粒子束, 2018, 30: 062002. doi: 10.11884/HPLPB201830.170440
引用本文: 李亚冉, 谢青, 陈志强, 等. 激光等离子体诊断用Wolter型X射线显微镜的设计[J]. 强激光与粒子束, 2018, 30: 062002. doi: 10.11884/HPLPB201830.170440
Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002. doi: 10.11884/HPLPB201830.170440
Citation: Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002. doi: 10.11884/HPLPB201830.170440

激光等离子体诊断用Wolter型X射线显微镜的设计

doi: 10.11884/HPLPB201830.170440
基金项目: 

国家重点研发计划 2017YFA0403300

详细信息
    作者简介:

    李亚冉(1990—), 男,博士研究生,主要从事X射线成像研究;yrli203@tongji.edu.cn

    通讯作者:

    穆宝忠(1975—), 男,教授,主要从事X射线光学系统研究;mubz@tongji.edu.cn

  • 中图分类号: O434.1

Optical design of Wolter X-ray microscope for laser plasma diagnostics

  • 摘要: 围绕着稠密等离子体硬X射线成像诊断,提出了一种基于阿贝正弦条件的Wolter型X射线显微镜的光学系统设计。详细介绍了Wolter显微镜的结构特点和设计方法,进行了参数优化,定量分析了包括物距、放大倍数、掠入射角和双曲面镜镜长在内的初始结构参数对物镜性能的影响。由光线追迹可以得出,在约±260 μm的视场范围内分辨率优于1 μm;在±460 μm范围内优于3 μm。有效视场可达约1 mm,几何集光立体角约为6.1×10-5sr。同时,该系统具备平响应系统特性,在mm级的视场范围内,系统响应效率的一致性优于93.7%。
  • 图  1  子午面内Wolter显微镜的光学结构示意图

    Figure  1.  Optical structure of Wolter X-ray microscope in meridian plane

    图  2  初始结构参数对Wolter显微镜性能的影响

    Figure  2.  Impacts of initial structure parameters on Wolter optical performance

    图  3  Wolter显微镜的反射镜尺寸及面形

    Figure  3.  Dimension figure and surface contour of Wolter reflecting mirrors

    图  4  位置偏差对空间分辨率的影响

    Figure  4.  Impacts of positioning errors on spatial resolution

    图  5  系统响应效率随能量和物方视场的变化

    Figure  5.  System response efficiency as a function of photon energy and field of view

    图  6  不同角度大小的Wolter扇区对系统分辨率和效率的影响

    Figure  6.  Impacts of different mirror sections on system performance

    表  1  Wolter型X射线显微镜的光学结构参数

    Table  1.   Optical parameters of Wolter X-ray microscope

    contour object distance/mm grazing angle/(°) a/mm b/mm mirror length/mm front-end radius/mm back-end radius/mm
    hyperboloid 292.4 0.408 165.8 3.0 15.0 7.686 7.981
    ellipsoid 307.8 0.398 3315.9 13.6 15.8 7.981 8.069
    下载: 导出CSV
  • [1] Li Y, Mu B, Xie Q, et al. Development of an X-ray eight-image Kirkpatrick-Baez diagnostic system for China's laser fusion facility[J]. Appl Opt, 2017, 56(12): 3311-3318. doi: 10.1364/AO.56.003311
    [2] Xie Q, Mu B, Li Y, et al. Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-Ⅲ facility[J]. Opt Express, 2017, 25(3): 2608-2617. doi: 10.1364/OE.25.002608
    [3] 穆宝忠, 伊圣振, 黄圣铃, 等. ICF用Kirkpatrick-Baez型显微镜光学设计[J]. 强激光与粒子束, 2008, 20(3): 409-412. http://www.hplpb.com.cn/article/id/3249

    Mu Baozhong, Yi Shengzhen, Huang Shengling, et al. Optical design of Kirkpatrick-Baez microscope for ICF. High Power Laser and Particle Beams, 2008, 20(3): 409-412 http://www.hplpb.com.cn/article/id/3249
    [4] Wolter H. Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen[J]. Ann Phys, 1952, 445(1/2): 94-114.
    [5] 王风丽, 王占山, 张众, 等. X射线天文望远镜的进展[J]. 物理, 2005, 34(3): 214-220. doi: 10.3321/j.issn:0379-4148.2005.03.013

    Wang Fengli, Wang Zhanshan, Zhang Zhong, et al. The development of X-ray astronomical telescopes. Physics, 2005, 34(3): 214-220 doi: 10.3321/j.issn:0379-4148.2005.03.013
    [6] Chase R C, Silk J K. Ellipsoid-hyperboloid X-ray imaging instrument for laser-pellet diagnostics[J]. Appl Opt, 1975, 14(9): 2096-2098. doi: 10.1364/AO.14.002096
    [7] Boyle M J, Ahlstrom H G. Imaging characteristics of an axisymmetric, grazing incidence X-ray microscope designed for laser fusion research[J]. Rev Sci Instrum, 1978, 49(6): 746-751. doi: 10.1063/1.1135605
    [8] Remington B A, Haan S W, Glendinning S G, et al. Large growth Rayleigh-Taylor experiments using shaped laser pulses[J]. Phys Rev Lett, 1991, 67(23): 3259-3262. doi: 10.1103/PhysRevLett.67.3259
    [9] Remington B A, Glendinning S G, Wallace R J, et al. Wölter X-ray microscope characterization measurements on Nova[J]. Rev Sci Instrum, 1992, 63(10): 5080-5082. doi: 10.1063/1.1143498
    [10] Remington B A, Weber S V, Marinak M M, et al. Single-mode and multimode Rayleigh-Taylor experiments on Nova[J]. Phys Plasmas, 1995, 2(1): 241-255. doi: 10.1063/1.871096
    [11] Kirkpatrick P, Baez A V. Formation of optical images by X-rays[J]. J Opt Soc Am, 1948, 38(9): 766-774. doi: 10.1364/JOSA.38.000766
    [12] Chon K S, Namba Y, Yoon K. Optimization of a Wolter type Ⅰ mirror for a soft X-ray microscope[J]. Prec Eng, 2006, 30(2): 223-230. doi: 10.1016/j.precisioneng.2005.09.002
    [13] Chon K S, Namba Y, Yoon K H. Precision machining of electroless nickel mandrel and fabrication of replicated mirrors for a soft X-ray microscope[J]. JSME International Journal Series C, 2006, 49(1): 56-62. doi: 10.1299/jsmec.49.56
    [14] Ninomiya K, Honda K, Aoki S, et al. Fabrication of an axisymmetric wolter type Ⅰ mirror with a gold deposited reflecting surface[J]. Jpn J Appl Phys, 1989, 28(11): 2303-2308.
    [15] Yamauchi K, Mimura H, Inagaki K, et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining[J]. Rev Sci Instrum, 2002, 73(11): 4028-4033. doi: 10.1063/1.1510573
    [16] Mori Y, Yamauchi K, Endo K. Mechanism of atomic removal in elastic emission machining[J]. Prec Eng, 1988, 10(1): 24-28. doi: 10.1016/0141-6359(88)90091-8
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1695
  • HTML全文浏览量:  429
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-02
  • 修回日期:  2018-03-01
  • 刊出日期:  2018-06-15

目录

    /

    返回文章
    返回