留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体对相对论返波管工作影响的粒子模拟

袁玉章 张军 白珍 钟辉煌

袁玉章, 张军, 白珍, 等. 等离子体对相对论返波管工作影响的粒子模拟[J]. 强激光与粒子束, 2018, 30: 043002. doi: 10.11884/HPLPB201830.170444
引用本文: 袁玉章, 张军, 白珍, 等. 等离子体对相对论返波管工作影响的粒子模拟[J]. 强激光与粒子束, 2018, 30: 043002. doi: 10.11884/HPLPB201830.170444
Yuang Yuzhang, Zhang Jun, Bai Zhen, et al. Simulation research on influence of RF breakdown plasma on performance of relative backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 043002. doi: 10.11884/HPLPB201830.170444
Citation: Yuang Yuzhang, Zhang Jun, Bai Zhen, et al. Simulation research on influence of RF breakdown plasma on performance of relative backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 043002. doi: 10.11884/HPLPB201830.170444

等离子体对相对论返波管工作影响的粒子模拟

doi: 10.11884/HPLPB201830.170444
基金项目: 国家高技术发展计划项目
详细信息
    作者简介:

    袁玉章(1989—), 男,博士,从事高功率微波技术研究;yuanyuzhang206@163.com

  • 中图分类号: TN125

Simulation research on influence of RF breakdown plasma on performance of relative backward wave oscillator

  • 摘要: 金属高频结构的射频击穿是引起功率下降和脉冲缩短的重要原因,是限制高功率微波(HPM)向更高功率、更长脉冲发展的重要因素。射频击穿的物理过程极其复杂,并且开展射频击穿研究对实验条件等要求高,因此粒子模拟是研究射频击穿的重要手段。通过在慢波结构表面设置爆炸发射电子和离子的方式模拟等离子体对一个X波段的相对论返波振荡器(RBWO)和一个Ka波段的RBWO工作的影响。粒子模拟结果表明,对于分段式慢波结构,后段慢波结构产生等离子体会对电子束的调制造成影响,进而影响器件正常工作,引起微波功率下降。当等离子体由质量较轻的正离子和电子组成时,会对束波作用造成更大的影响,引起较大的输出功率下降。相同密度的射频击穿等离子体对Ka波段RBWO工作的影响大于对X波段RBWO的影响。
  • 图  1  D/λ=2.7的X波段过模RBWO结构示意图

    Figure  1.  Schematic of an X-band overmoded RBWO with D/λ=2.7

    图  2  X波段过模器伴的2维PIC模拟中获得的微波功率和输出微波频率

    Figure  2.  Microwave power and output spectrum of the X-band overmoded RBWO in 2D PIC simulation

    图  3  20 ns时器件场分布

    Figure  3.  Field distribution of the X-band device at 20 ns

    图  4  前段慢波结构中段设置不同发射粒子和后段慢波结构中段设置不同发射粒子时器件输出功率对比(X波段)

    Figure  4.  Output power of the X-band divice different charged particles at SWS1 or SWS2

    图  5  29 ns时前半段慢波结构设置爆炸发射氢离子和氧离子情形时的粒子分布图

    Figure  5.  Distribution of the particles at 29 ns when set explosive emission of hydrogen ions and oxygen ions

    图  6  Ka波段过模O型Cerenkov器件结构示意图

    Figure  6.  Schematic of a Ka-band O-type overmoded device

    图  7  Kα波段过模器件的2维PIC模拟中获得的微波功率和输出微波频谱

    Figure  7.  Microwave power and output spectrum of the Kα-band overmoded RBWO in 2D PIC simulation

    图  8  19 ns时器件场分布

    Figure  8.  Field distrubution of the Kα-band device at 19 ns

    图  9  前段慢波结构中段设置不同发射粒子和后段慢波结构中段设置不同发射粒子时器件输出功率对比(Ka波段)

    Figure  9.  Output power of the Kα-band device emitting different charged particles at SWS1 or SWS2

    图  10  15 ns时原模型与前半段设置爆炸发射电子和氢离子时的相空间图及后半段设置爆炸发射电子和氢离子时的相空间图

    Figure  10.  Comparison of the phase space diagram among original situation, setting explosive emission of electrons and hydrogen ions at SWS1 and setting explosive emission of electrons and hydrogen ions at SWS2

  • [1] Baker R J. 高功率微波源技术[M]. 北京: 清华大学出版社, 2004.

    Baker R J. High-power microwave sources and technologies. Beijing: Tsinghua University Press, 2004
    [2] Benford J, Benford G. Survey of pulse shortening causes in high power microwave sources[J]. IEEE Tran on Plasma Sci, 1997, 25: 311-317. doi: 10.1109/27.602505
    [3] Goebel D M. Pulse shortening causes in high power BWO and TWT microwave sources[J]. IEEE Tran on Plasma Sci, 1998, 26(3): 63-247.
    [4] Korovin S D, Mesyats G A, Pegel I V, et al. Pulse width limitation in the relativistic backward wave oscillator[J]. IEEE Tran on Plasma Sci, 2000, 28(3): 485-494. doi: 10.1109/27.887654
    [5] Gunin A V, Klimov A I, Korovin S D. Relativistic X-band BWO with 3 GW pulse power[J]. IEEE Tran on Plasma Sci, 1998, 26(3): 326-333. doi: 10.1109/27.700761
    [6] Abubakirov E B, Deenisenko A N, Fuchs M I. Oversized BWO with selective Bragg mode converter[C]//Digest of Technical Papers, International Workshop on High Power Microwave Generation and Pulse Shortening. 1997: 139.
    [7] Goebel D M. Performance and pulse shortening effects in a 200 kV PASOTRON HPM source[J]. IEEE Tran on Plasma Sci, 1998, 26(3): 354-365. doi: 10.1109/27.700766
    [8] Calico S E, Agee F J, Clark M C. Rep-rate operation of a magnetically insulated line oscillator[C] // Proceeding of the 1st International Workshop on Crossed Field Devices. 1995.
    [9] Agee F J, Calico S E, Hendricks K J. Pulse shortening in the magnetically insulated line oscillator[C]// Proc of SPIE. 1996, 2843: 144-152.
    [10] 张军. 新型过模慢波高功率微波发生器的研究[D]. 长沙: 国防科技大学, 2004.

    Zhang Jun. Investigations of a novel overmoded slow-wave high-power microwave generator. Changsha: National University of Defense Technology, 2004
    [11] 常超. 高功率微波系统中的击穿物理[M]. 北京: 科学出版社, 2015.

    Chang Chao. Breakdown physics in high power microwave system. Beijing: Science press, 2015
    [12] Bai Zhen, Zhang Jun, Zhong Huihuang. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output[J]. Physics of Plasma, 2016, 23: 043109. doi: 10.1063/1.4945645
  • 加载中
图(10)
计量
  • 文章访问数:  1173
  • HTML全文浏览量:  282
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-08
  • 修回日期:  2017-12-13
  • 刊出日期:  2018-04-15

目录

    /

    返回文章
    返回