W band traveling wave tube based on staggered double rectangular waveguide structure
-
摘要: 利用CST PIC计算了基于双排矩形波导慢波结构的W波段行波管的注波互作用,在采用10 kV,70 mA的电子注的条件下,在92~97 GHz范围内,输出功率大于35 W,增益大于30 dB,电子效率约为5%。即使在10 kV较低的电压下,双排矩形波导慢波结构的尺寸仍然较大,有利于降低制造难度。提出了一种基于电火花线切割的加工制造工艺,成功制造了双排矩形波导慢波结构部件。在92~97 GHz范围内对所需盒形窗和电子枪进行了计算机模拟,设计、加工了盒形窗和电子枪的相关零件,制造了相关部件。将慢波结构部件和输能窗部件组装起来进行了冷测,驻波比在90~100 GHz范围内小于2.067。
-
关键词:
- W波段行波管 /
- 双排矩形波导慢波结构 /
- 盒形窗 /
- PIC模拟
Abstract: Beam-wave interaction for a W band traveling wave tube(TWT) based on staggered double rectangular waveguide structure(SDRWS) is calculated by CST PIC, showing that the TWT has over 35 W output power and over 30 dB gain and about 5% electron efficiency from 92 GHz to 97 GHz on the condition of a 10 kV, 70 mA beam. Even if the beam voltage of 10 kV is relatively low, the sizes of SDRWS still remain relatively large, meaning that SDRWS is in favor of evading the difficulties in manufacturing. A process based on wire electrical discharge machining(wire-EDM) is proposed to manufacture SDRWS for W band TWT, and an SDRWS assembly is successfully obtained. Besides, box-shaped window and electron gun are also simulated by computer, and correspondent parts are manufactured and then put together into assemblies. Then "cold test" is performed on an SDRWS assembly put together with two box-shaped windows, showing that voltage standing wave ratio is lower than 2.067 from 92 GHz to 100 GHz. -
表 1 初步确定的双排矩形波导慢波结构参数
Table 1. Initially selected structural parameters of staggered double rectangular waveguide structure(SDRWS) for W-band traveling wave tube
a/mm b/mm p/mm t/mm r/mm 2.1 0.8 0.8 0.2 0.22 表 2 PIC模拟中的输入信号的频率和输入功率
Table 2. Frequencies and input powers of input signals in PIC simulations
ordinal number of runs frequency/GHz input power/W 1 92 0.02 2 93 0.02 3 94 0.02 4 95 0.02 5 96 0.02 6 97 0.02 7 98 0.08 8 99 0.32 9 100 1.28 -
[1] Gerum W, Lippert G, Malzahn P, et al. 94 GHz TWT for military radar applications[J]. IEEE Trans Elec Dev, 2001, 48(1): 72-73. doi: 10.1109/16.892170 [2] Linde G J, Ngo M T, Danly B G, et al. WARLOC: A high-power coherent 94 GHz radar[J]. IEEE Trans Aerospace and Electronic Systems, 2008, 44(3): 1102-1117. doi: 10.1109/TAES.2008.4655367 [3] Theiss A J, Meadows C J, True R B. Experimental investigation of a novel circuit for mm-wave TWTs[J]. IEEE Trans Elec Dev, 2007, 54(5): 1054-1060. doi: 10.1109/TED.2007.894255 [4] Theiss A J, Meadows C J, Freeman R, et al. High-average-power W-band TWT development[J]. IEEE Trans Plasma Science, 2010, 38(6): 1239-1243. doi: 10.1109/TPS.2010.2041794 [5] Feng J J, Hu Y F, Cai J K, et al. Progress of W-band 10 W CW TWT[C]//Proc of IVEC. 2010: 501-502. [6] Hu Yinfu, Feng Jinjun, Liu Jingkai, et al. Progress of wide bandwidth W-band 20 W CW TWT[C]//Proc of IVEC. 2014: 179-180. [7] Wei Y Y, Gong Y B, Duan Z Y, et al. Research of millimeter wave and terahertz vacuum devices in NKLST-VE[C]//Proc of GSMM. 2012: 633-636. [8] Wang Zicheng, Li Haiqiang, Xu Anyu, et al. An inner-feedback-style traveling-wave tube oscillator[J]. Journal of Electronics, 2012, 29(6): 556-561. [9] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形波导慢波结构W波段宽频带行波管模拟研究[J]. 物理学报, 2012, 61: 124101. doi: 10.7498/aps.61.124101Liu Qinglun, Wang Zicheng, Liu Pukun. Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure. Acta Physica Sinica, 2012, 61: 124101 doi: 10.7498/aps.61.124101 [10] 刘青伦, 王自成, 刘濮鲲, 等. 基于场匹配法的双排矩形栅慢波结构高频特性研究[J]. 物理学报, 2012, 61: 244102. doi: 10.7498/aps.61.244102Liu Qinglun, Wang Zicheng, Liu Pukun, et al. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 2012, 61: 244102 doi: 10.7498/aps.61.244102 [11] 谢文球, 王自成, 罗积润, 等. 基于开槽单矩形栅和圆形电子注的W波段返波振荡器[J]. 物理学报, 2013, 62: 158503. doi: 10.7498/aps.62.158503Xie Wenqiu, Wang Zicheng, Luo Jirun, et al. Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam. Acta Physica Sinica, 2013, 62: 158503 doi: 10.7498/aps.62.158503