留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双排矩形波导慢波结构W波段行波管

王自成 唐伯俊 李海强 田宏 董芳

王自成, 唐伯俊, 李海强, 等. 双排矩形波导慢波结构W波段行波管[J]. 强激光与粒子束, 2018, 30: 053008. doi: 10.11884/HPLPB201830.170445
引用本文: 王自成, 唐伯俊, 李海强, 等. 双排矩形波导慢波结构W波段行波管[J]. 强激光与粒子束, 2018, 30: 053008. doi: 10.11884/HPLPB201830.170445
Wang Zicheng, Tang Bojun, Li Haiqiang, et al. W band traveling wave tube based on staggered double rectangular waveguide structure[J]. High Power Laser and Particle Beams, 2018, 30: 053008. doi: 10.11884/HPLPB201830.170445
Citation: Wang Zicheng, Tang Bojun, Li Haiqiang, et al. W band traveling wave tube based on staggered double rectangular waveguide structure[J]. High Power Laser and Particle Beams, 2018, 30: 053008. doi: 10.11884/HPLPB201830.170445

双排矩形波导慢波结构W波段行波管

doi: 10.11884/HPLPB201830.170445
基金项目: 

国家自然科学基金项目 61172016

国家自然科学基金项目 61401430

北京市自然科学基金重点项目 201511232037

详细信息
    作者简介:

    王自成(1966-),男,博士,研究员,从事短毫米波与太赫兹器件的研究;wzich_cn@sina.com

  • 中图分类号: TN128

W band traveling wave tube based on staggered double rectangular waveguide structure

  • 摘要: 利用CST PIC计算了基于双排矩形波导慢波结构的W波段行波管的注波互作用,在采用10 kV,70 mA的电子注的条件下,在92~97 GHz范围内,输出功率大于35 W,增益大于30 dB,电子效率约为5%。即使在10 kV较低的电压下,双排矩形波导慢波结构的尺寸仍然较大,有利于降低制造难度。提出了一种基于电火花线切割的加工制造工艺,成功制造了双排矩形波导慢波结构部件。在92~97 GHz范围内对所需盒形窗和电子枪进行了计算机模拟,设计、加工了盒形窗和电子枪的相关零件,制造了相关部件。将慢波结构部件和输能窗部件组装起来进行了冷测,驻波比在90~100 GHz范围内小于2.067。
  • 图  1  具有圆形电子注通道的双排矩形波导慢波结构示意图

    Figure  1.  Schematic illustration of SDRWS with circular beam tunnel

    图  2  W波段行波管的注-波互作用

    Figure  2.  Beam-wave interaction simulations for W band TWT

    图  3  W波段双排矩形波导慢波结构制造工艺示意图

    Figure  3.  Schematic process of W band SDRWS

    图  4  上矩形栅图片和W波段双排矩形波导慢波结构组部件图片

    Figure  4.  Photos of upper gratings and W band SDRWS assembly

    图  5  W波段盒形窗的模拟模型及计算结果

    Figure  5.  Simulation model and calculated results of W band box-shaped window

    图  6  与两件盒形窗组件装配在一起的W波段双排矩形波导慢波结构组件图片

    Figure  6.  Photo of W band SDRWS assembly put together with two box-shaped window assemblies

    图  7  电子枪的MTSS模拟结果及2件电子枪组件图片

    Figure  7.  Simulated results by MTSS for the electron gun and photos of two electron gun assemblies

    表  1  初步确定的双排矩形波导慢波结构参数

    Table  1.   Initially selected structural parameters of staggered double rectangular waveguide structure(SDRWS) for W-band traveling wave tube

    a/mm b/mm p/mm t/mm r/mm
    2.1 0.8 0.8 0.2 0.22
    下载: 导出CSV

    表  2  PIC模拟中的输入信号的频率和输入功率

    Table  2.   Frequencies and input powers of input signals in PIC simulations

    ordinal number of runs frequency/GHz input power/W
    1 92 0.02
    2 93 0.02
    3 94 0.02
    4 95 0.02
    5 96 0.02
    6 97 0.02
    7 98 0.08
    8 99 0.32
    9 100 1.28
    下载: 导出CSV
  • [1] Gerum W, Lippert G, Malzahn P, et al. 94 GHz TWT for military radar applications[J]. IEEE Trans Elec Dev, 2001, 48(1): 72-73. doi: 10.1109/16.892170
    [2] Linde G J, Ngo M T, Danly B G, et al. WARLOC: A high-power coherent 94 GHz radar[J]. IEEE Trans Aerospace and Electronic Systems, 2008, 44(3): 1102-1117. doi: 10.1109/TAES.2008.4655367
    [3] Theiss A J, Meadows C J, True R B. Experimental investigation of a novel circuit for mm-wave TWTs[J]. IEEE Trans Elec Dev, 2007, 54(5): 1054-1060. doi: 10.1109/TED.2007.894255
    [4] Theiss A J, Meadows C J, Freeman R, et al. High-average-power W-band TWT development[J]. IEEE Trans Plasma Science, 2010, 38(6): 1239-1243. doi: 10.1109/TPS.2010.2041794
    [5] Feng J J, Hu Y F, Cai J K, et al. Progress of W-band 10 W CW TWT[C]//Proc of IVEC. 2010: 501-502.
    [6] Hu Yinfu, Feng Jinjun, Liu Jingkai, et al. Progress of wide bandwidth W-band 20 W CW TWT[C]//Proc of IVEC. 2014: 179-180.
    [7] Wei Y Y, Gong Y B, Duan Z Y, et al. Research of millimeter wave and terahertz vacuum devices in NKLST-VE[C]//Proc of GSMM. 2012: 633-636.
    [8] Wang Zicheng, Li Haiqiang, Xu Anyu, et al. An inner-feedback-style traveling-wave tube oscillator[J]. Journal of Electronics, 2012, 29(6): 556-561.
    [9] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形波导慢波结构W波段宽频带行波管模拟研究[J]. 物理学报, 2012, 61: 124101. doi: 10.7498/aps.61.124101

    Liu Qinglun, Wang Zicheng, Liu Pukun. Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure. Acta Physica Sinica, 2012, 61: 124101 doi: 10.7498/aps.61.124101
    [10] 刘青伦, 王自成, 刘濮鲲, 等. 基于场匹配法的双排矩形栅慢波结构高频特性研究[J]. 物理学报, 2012, 61: 244102. doi: 10.7498/aps.61.244102

    Liu Qinglun, Wang Zicheng, Liu Pukun, et al. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 2012, 61: 244102 doi: 10.7498/aps.61.244102
    [11] 谢文球, 王自成, 罗积润, 等. 基于开槽单矩形栅和圆形电子注的W波段返波振荡器[J]. 物理学报, 2013, 62: 158503. doi: 10.7498/aps.62.158503

    Xie Wenqiu, Wang Zicheng, Luo Jirun, et al. Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam. Acta Physica Sinica, 2013, 62: 158503 doi: 10.7498/aps.62.158503
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1142
  • HTML全文浏览量:  255
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-08
  • 修回日期:  2018-01-09
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回