Effect of the gain medium position on the external second harmonic generation conversion efficiency
-
摘要: 采用MgO掺杂的周期性极化铌酸锂晶体作为非线性晶体,搭建了线性平-凹腔结构的外腔式倍频系统,分析了增益介质和输入耦合镜之间的距离对二次谐波转换效率的影响。实验中,使用光纤耦合二极管泵浦Nd: YVO4激光器作为基频光源,通过改变增益介质和输入耦合镜的间距,测量了激光器的纵模数量、锁模脉冲稳定性、基频光线宽以及光-光转换效率。实验结果显示,增加增益介质和输入耦合镜之间的距离,可以在一定程度上提升自锁模脉冲的稳定性并有效减小基频光线宽。当泵浦功率较高时,适当增加该间距可以有效提升二次谐波转换效率。Abstract: The effect of the gain medium position in the resonator on the external second harmonic generation (SHG) conversion efficiency was studied. A MgO-doped periodically poled LiNbO3 crystal (MgO: PPLN) was utilized to achieve a 532-nm green-light laser outside the resonator of a mode-locked diode-pumped Nd: YVO4 1064-nm laser. We theoretically and experimentally verified that increasing the mirror/crystal separation could reduce the longitudinal mode number, narrow the linewidth and stabilize the mode locked pulse owing to the spatial burning hole effect. These phenomena would further affect the SHG conversion efficiency.The experimental results show that, increasing the mirror/crystal separation could promote the SHG conversion efficiency with the fixed focus length, especially at the higher pump power. The theoretical analysis and experimental results have reference significance for improving the SHG efficiency of the external end-pumped mode-locked laser.
-
Key words:
- second harmonic generation /
- MgO: PPLN /
- Nd: YVO4 /
- conversion efficiency /
- laser
-
图 3 (a) d=3.5 mm时实验测量得到的光谱图;(b) d=12 mm时实验测量得到的光谱图;(c)线宽和间距d的关系图;(d)理论计算和实验测量得到的纵模数量和间距d之间的关系图
Figure 3. (a) d=3.5 mm, (b) d=12 mm, experimental optical spectra for different crystal/mirror separation d; (c) the linewidth as a function of the separation d; (d) experimental results and theoretical calculation of the number of longitudinal lasing modes as a function of the separation d
-
[1] Son S J, Ko D K, Yu N E. Study of an optical device based on a quasi-phase-matching method for speckle noise reduction for laser display[J]. J Korean Phys Soc, 2016, 69(5): 756-761. doi: 10.3938/jkps.69.756 [2] Hideki F, Yohei K, Shuji T. Sensitivity improvement of optical-fiber temperature sensor with solid cladding material based on multimode interference[J]. Jpn J Appl Phys, 2015, 54: 032502. [3] Wiener, Karp T S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Trans Commun, 1980, 28(9): 1602-1607. doi: 10.1109/TCOM.1980.1094858 [4] Golden J. Green lasers score good marks in semiconductor material processing[J]. Laser Focus World, 1992, 28(6): 75-88. [5] Suzuki K, Iwasaki R, Takagi R, et al. Simultaneous observation of cavitation bubbles generated in biological tissue by high-speed optical and acoustic imaging methods[J]. Jpn J Appl Phys, 2017, 56: 07JF27. [6] Enya Y, Yoshizumi Y, Kyono T, et al. 531 nm green lasing of InGaN based laser diodes on semi-polar[ 7 ] free-standing GaN substrates[J]. Appl Phys Express, 2009, 2: 082101. doi: 10.1143/APEX.2.082101[7] Kumar S C, Samanta G, Devi K, et al. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation[J]. Opt express, 2011, 19(12): 11152-11169. doi: 10.1364/OE.19.011152 [8] 毛小洁, 秘国江, 庞庆生, 等. 高功率高光束质量带内泵浦皮秒放大激光系统[J]. 强激光与粒子束, 2015, 27: 061001. doi: 10.11884/HPLPB201527.061001Mao Xiaojie, Mi Guojiang, Pang Qingsheng, et al. High power high beam quality in-band pumping picosecond amplification laser system. High Power Laser and Particle Beams, 2015, 27: 061001 doi: 10.11884/HPLPB201527.061001 [9] 彭钦军, 许祖彦. 高平均功率固体激光功率和光束质量关系研究进展[J]. 强激光与粒子束, 2011, 23(7): 1707-1712. http://www.hplpb.com.cn/article/id/5330Peng Qinjun, Xu Zuyan. Relationship between beam quality and power for solid state laser with high average power. High Power Laser and Particle Beams, 2011, 23(7): 1707-1712 http://www.hplpb.com.cn/article/id/5330 [10] Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power[C]//Proc of SPIE. 2014: 896407. [11] Zhao H, Sukhoy K, Lima I Jr, et al. Generation of green second harmonic with 60% conversion efficiency from a Q-switched microchip laser in MgO: PPLN crystal[J]. Laser Phys Lett, 2012, 9(5): 355. doi: 10.7452/lapl.201110129 [12] Louchev O A, Yu N E, Kurimura S, et al. Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals[J]. Appl Phys Lett, 2005, 87(13): 1101. [13] Liao Z M, Payne S A, Dawson J, et al. Thermally induced dephasing in periodically poled KTP frequency-doubling crystals[J]. JOSA B, 2004, 21(12): 2191-2196. doi: 10.1364/JOSAB.21.002191 [14] Sabouri, Khorsandi S G A. Engineered aperiodically poled nonlinear crystal for high-power second-harmonic generation[J]. JOSA B, 2016, 33(12): 2493-2501. doi: 10.1364/JOSAB.33.002493 [15] Yan B, Qi Y, Wang Y. Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped[C]//Proc of SPIE. 2016: 1015217. [16] 马兴寰, 刘正颖, 张蓉竹, 等. 激光热效应对PPLN晶体倍频效率的影响[J]. 强激光与粒子束, 2011, 23(12): 3302-3306. http://www.hplpb.com.cn/article/id/5699Ma Xinghuan, Liu Zhengying, Zhang Rongzhu, et al. Influences of laser thermal effect on second harmonic generation in periodically poled lithium niobate crystal. High Power Laser and Particle Beams, 2011, 23(12): 3302-3306 http://www.hplpb.com.cn/article/id/5699 [17] 郝丽云, 苏岑, 漆云凤, 等. 基于PPMgO: LN晶体的连续波全光纤激光器倍频特性[J]. 中国激光, 2013(6): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201306011.htmHao Liyun, Su Cen, Qi Yunfeng, et al. Second harmonic generation characteristics of continuous wave all-fiber laser oscillator in PPMgO: LN. Chinese J Lasers, 2013(6): 71-76 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201306011.htm [18] Andreev Y M, Arapov Y D, Grechin S G, et al. Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals[J]. Quantum Elect, 2016, 46(1): 33-38. doi: 10.1070/QE2016v046n01ABEH015893 [19] Cho H H, Chen Y F, Huang Y J, et al. Effect of spatial hole burning on a dual-wavelength mode-locked laser based on compactly combined dual gain media[J]. Photonics Research, 2014, 2(6): 161-167. [20] Liang H, Chen R C, Huang Y, et al. Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd: YVO4 laser[J]. Optics Express, 2008, 16(25): 21149-21154. [21] Chen Y, Huang Y, Chiang P, et al. Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers[J]. Appl Phys B, 2011, 103(4): 841-846. [22] Fu H, Haken H. Multifrequency operations in a short-cavity standing-wave laser[J]. Physical Review A, 1991, 43(5): 2446-2454. [23] Kim H S, Kim S K, Kim B Y. Longitudinal mode control in few-mode erbium-doped fiber lasers[J]. Opt Lett, 1996, 21(15): 1144. [24] Zayhowski J. Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities[J]. Opt Lett, 1990, 15(8): 431-433. [25] Kintz G J, Baer T. Single-frequency operation in solid-state laser materials with short absorption depths[J]. IEEE Journal of Quantum Electronics, 1990, 26(9): 1457-1459. [26] 张孔, 白建东, 何军, 等. 激光线宽对单次通过PPMgO: LN晶体倍频效率的影响[J]. 物理学报, 2016, 65: 074207. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201607023.htmZhang Kong, Bai Jiandong, He Jun, et al. Influence of laser linewidth on the conversion effciency of single-pass frequency doubling with a PPMgO: LN crystal. Acta Physica Sinica, 2016, 65: 074207 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201607023.htm [27] Xue J W, Deng K Y, Fang Y J, et al. Analysis of frequency doubling characteristics of periodically poled crystal[J]. Laser & Optoelectronics Progress, 2015, 52: 071901. [28] Soibel A, Capasso F, Gmachl C, et al. Stability of pulse emission and enhancement of intracavity second-harmonic generation in self-mode-locked quantum cascade lasers[J]. IEEE J Quantum Elect, 2004, 40(3): 197-204.