留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种耦合度可调节的微波脉冲压缩装置设计及实验

熊正锋 宁辉 陈怀璧 程诚

熊正锋, 宁辉, 陈怀璧, 等. 一种耦合度可调节的微波脉冲压缩装置设计及实验[J]. 强激光与粒子束, 2018, 30: 073001. doi: 10.11884/HPLPB201830.170469
引用本文: 熊正锋, 宁辉, 陈怀璧, 等. 一种耦合度可调节的微波脉冲压缩装置设计及实验[J]. 强激光与粒子束, 2018, 30: 073001. doi: 10.11884/HPLPB201830.170469
Xiong Zhengfeng, Ning Hui, Chen Huaibi, et al. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30: 073001. doi: 10.11884/HPLPB201830.170469
Citation: Xiong Zhengfeng, Ning Hui, Chen Huaibi, et al. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30: 073001. doi: 10.11884/HPLPB201830.170469

一种耦合度可调节的微波脉冲压缩装置设计及实验

doi: 10.11884/HPLPB201830.170469
基金项目: 国家高技术发展计划项目
详细信息
    作者简介:

    熊正锋(1980-),男,博士,主要从事高功率微波技术研究; xiongzhengfeng@163.com

  • 中图分类号: TN815

Design and experiment of microwave pulse compressor with adjustable coupling coefficient

  • 摘要: 针对有源能量倍增器法(SLED)脉冲压缩实验中对储存能量阶段和释放能量阶段耦合度调节的需求,利用支臂短路波导H-T的调配功能,设计了一种耦合度可调节的SLED脉冲压缩装置。基于散射矩阵理论,分析了支臂短路波导H-T对SLED脉冲压缩装置耦合度的调节能力。利用大功率波导环形器代替3 dB耦合器,进行了基于单储能腔的无源SLED脉冲压缩实验,实验结果表明,支臂短路波导H-T对耦合度的调节能力与理论分析相吻合。
  • 图  1  SLED脉冲压缩装置示意图

    Figure  1.  Diagram of the SLED pulse compressor

    图  2  耦合度可调节的SLED脉冲压缩系统示意图

    Figure  2.  Diagram of the SLED pulse compressor with adjustable coupling coefficient

    图  3  支臂短路H-T波导示意图

    Figure  3.  Diagram of the H-T waveguide junction with shorting piston

    图  4  反射系数随支臂相移变化

    Figure  4.  The reflection coefficient varies with the phase shift

    图  5  S波段圆柱储能腔及输入波导

    Figure  5.  The cylindrical storage cavity and input waveguide at S-band

    图  6  单储能腔SLED脉冲压缩实验系统组成示意图

    Figure  6.  Pulse compression experiment system with single cavity

    图  7  当短路活塞位置在0 mm时的典型波形

    Figure  7.  Typical waveform while ΔL=0 mm

    图  8  短路活塞移动55 mm时的典型波形

    Figure  8.  Typical waveform while ΔL=55 mm

    图  9  短路活塞移动约76 mm时的典型波形

    Figure  9.  Typical waveform while ΔL=76 mm

  • [1] Tantawi S G, Nantista C, Kroll N, et al. Multimoded RF delay line distribution system for the next linear collider[J]. Physics Review Special Topics—Accelerators and Beams, 2002, 5(1): 419-426.
    [2] 宁辉, 方进勇, 李平, 等. 高功率微波脉冲压缩技术实验研究[J]. 强激光与粒子束, 2001, 13(4): 471-474. http://www.hplpb.com.cn/article/id/1705

    Ning Hui, Fang Jinyong, Li Ping, et al. Experimental research on HPM pulse compression, High Power Laser and Particle Beams, 2001, 13(4): 471-474 http://www.hplpb.com.cn/article/id/1705
    [3] Petelin M I, Hirshfield J L, Kuzikov S V, et al. High power microwave pulse compressors: passive, active and combined[C]//Proc of IEEE International Conference on Vacuum Electronics. 2000, 4031: 224-231.
    [4] Guo Jiquan, Tantawi S G. Active RF pulse compression using an electrically controlled semiconductor switch[J]. IEEE Particle Accelerator Conference, 2007, 877(22): 2433-2435.
    [5] Vikharev A L, Ivanov O A, Gorbachev A M, et al. X-band active-passive RF pulse compressor with plasma switches[J]. Physics Review Special Topics—Accelerators and Beams, 2011, 14(12): 508-605.
    [6] Tantawi S G, Ruth R D, Vlieks A E, et al. Active radio frequency pulse compression using switched resonant delay lines[J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1486-1492. doi: 10.1109/22.618460
    [7] 梁昌洪, 谢拥军, 官伯然. 简明微波[M]. 北京: 高等教育出版社, 2006: 290-293.

    Liang Changhong, Xie Yongjun, Guan Boran. Concise microwave. Beijing: Higher Education Press, 2006: 290-293
    [8] Tantawi S G, Petelin M I. The design and analysis of multi-megawatt distributed single pole double throw (SPDT) microwave switches[J]. IEEE MTT-S International Microwave Symposium Digest, 1999, 472(1): 296-303.
  • 加载中
图(9)
计量
  • 文章访问数:  1559
  • HTML全文浏览量:  386
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-19
  • 修回日期:  2018-01-04
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回