留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共形单步交替方向隐式时域有限差分方法及其改进

王文兵 周辉 马良 程引会 刘逸飞 郭景海 赵墨

王文兵, 周辉, 马良, 等. 共形单步交替方向隐式时域有限差分方法及其改进[J]. 强激光与粒子束, 2018, 30: 073205. doi: 10.11884/HPLPB201830.170475
引用本文: 王文兵, 周辉, 马良, 等. 共形单步交替方向隐式时域有限差分方法及其改进[J]. 强激光与粒子束, 2018, 30: 073205. doi: 10.11884/HPLPB201830.170475
Wang Wenbing, Zhou Hui, Ma Liang, et al. Stability analysis and improvement of conformal leapfrog alternating direction implicit finite-difference time-domain method[J]. High Power Laser and Particle Beams, 2018, 30: 073205. doi: 10.11884/HPLPB201830.170475
Citation: Wang Wenbing, Zhou Hui, Ma Liang, et al. Stability analysis and improvement of conformal leapfrog alternating direction implicit finite-difference time-domain method[J]. High Power Laser and Particle Beams, 2018, 30: 073205. doi: 10.11884/HPLPB201830.170475

共形单步交替方向隐式时域有限差分方法及其改进

doi: 10.11884/HPLPB201830.170475
基金项目: 

强脉冲辐射环境模拟与效应国家重点实验室基金项目 SKLIPR1505

详细信息
    作者简介:

    王文兵(1993—),男,硕士研究生,从事电磁脉冲模拟与效应研究;wangwenbing@nint.ac.cn

  • 中图分类号: O441.4

Stability analysis and improvement of conformal leapfrog alternating direction implicit finite-difference time-domain method

  • 摘要: 提出了一种基于共形网格技术的共形单步交替方向隐式时域有限差分(CLeapfrog ADI-FDTD)方法。与常规FDTD方法相比,此方法能够减小由于目标边界不契合网格划分而引入的阶梯近似误差,提高算法计算不规则目标时的精度;同时算法稳定性更强,计算效率更高。由于引入共形技术后显著降低了原差分法的无条件稳定性,本文利用增长矩阵本征值方法理论分析了算法的稳定性,然后采用了一种改进的共形面积计算方法,在此基础上提出了一种稳定性更高的改进的共形单步交替方向隐式时域有限差分(ICLeapfrog ADI-FDTD)方法。数值算例验证了ICLeapfrog ADI-FDTD是一种具有高稳定性和高精度的高效算法。
  • 图  1  计算目标边界上的两类共形网格

    Figure  1.  Two kinds of conformal grids in the boundary of computational target

    图  2  差分方法中一种特殊的共形网格

    Figure  2.  A special conformal grid in finite-difference method

    图  3  CLeapfrog ADI-FDTD方法中p与 |λ|max的关系

    Figure  3.  Relationship between p and |λ|max in CLeapfrog ADI-FDTD method

    图  4  共形网格算法的改进

    Figure  4.  An improved technology of conformal method

    图  5  CLeapfrog ADI-FDTD和ICLeapfrog ADI-FDTD中ap的关系

    Figure  5.  Relationship between a and p in CLeapfrog ADI-FDTD and ICLeapfrog ADI-FDTD methods

    图  6  无限长圆柱划分网格中的非稳定网格

    Figure  6.  Instability grids in division of infinite- long perfectly conducting cylinder

    图  7  CLeapfrog ADI-FDTD方法和ICLeapfrog ADI-FDTD方法的稳定性对比

    Figure  7.  Stability comparison of CLeapfrog ADI-FDTD and ICLeapfrog ADI-FDTD methods

    图  8  无限长金属圆柱双站RCS

    Figure  8.  Bistatic radar cross section(RCS) of infinite-long perfectly conducting cylinder

    图  9  金属球后向散射RCS

    Figure  9.  Backward scatter RCS of perfectly conducting sphere

    表  1  不同时间步长下共形方法的增长矩阵模的最大值

    Table  1.   Maximum eigenvalue in the growth matrix at different time step

    C CLeapfrog ADI-FDTD ICLeapfrog ADI-FDTD
    0.1 1.025 1.065
    0.5 1.129 1.371
    1.0 1.276 1.909
    1.5 1.444 2.717
    2.0 1.637 3.903
    3.0 2.114 7.551
    4.0 2.740 12.700
    下载: 导出CSV
  • [1] 葛德彪, 闫玉波. 电磁波时域有限差分法[M]. 3版. 西安: 西安电子科技大学出版社, 2011: 1-27.

    Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves. 3rd ed. Xi'an: Xidian University Press, 2011: 1-27
    [2] 白剑. FDTD在若干电磁问题中应用的研究[D]. 西安: 西安电子科技大学, 2007: 1-45.

    Bai Jian. Research on the applications of FDTD for the analysis of the electromagnetic problems. Xi'an: Xidian University, 2007: 1-45
    [3] 刘宗信, 陈亦望, 徐鑫, 等. 三维周期结构弱无条件稳定时域有限差分算法[J]. 强激光与粒子束, 2012, 24(11): 2687-2692. doi: 10.3788/HPLPB20122411.2687

    Liu Zong-xin, Chen Yiwang, Xu Xin, et al. Conformal FDTD mesh-generating technique for objects with triangle-patch model. High Power Laser and Particle Beams, 2012, 24(11): 2687-2692 doi: 10.3788/HPLPB20122411.2687
    [4] Cooke S J, Botton M, Antonsen Jr T M, et al. A leapfrog formulation of the 3-D ADI-FDTD algorithm[J]. International Journal of Numerical Modeling, 2009, 22(2): 187-200. doi: 10.1002/jnm.707
    [5] Wang Yigang, Chen Bin, Chen Hailin, et al. One step leapfrog ADI-FDTD method in 3-D cylindrical grids with a CPML implementation[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 714-717. doi: 10.1109/LAWP.2014.2315435
    [6] Liang Zhuoxian, Xie Hao, Guo Yang, et al. Improved hybrid leapfrog ADI-FDTD method for simulating near-field coupling effects among multiple thin wire monopole antennas on a complex platform[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(2): 618-626. doi: 10.1109/TEMC.2016.2632129
    [7] 杨利霞, 胡晓娟, 葛德彪. 基于目标三角面元模型生成FDTD共形网格的方法[J]. 强激光与粒子束, 2007, 19(8): 1333-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200708024.htm

    Yang Li-xia, Hu Xiaojuan, Ge Debiao. Conformal FDTD mesh-generating technique for objects with triangle-patch model. High Power Laser and Particle Beams, 2007, 19(8): 1333-1337 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200708024.htm
    [8] Dey S, Mittra R, Chebolu S. A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conduction objects[J]. IEEE Microwave Opt Tech Lett, 1997, 7(9): 273-275.
    [9] 何页. 共形时域有限差分方法的理论研究及其相关应用[D]. 南京: 南京航空航天大学, 2010: 21-55.

    He Ye. Theoretical study and related applications of the conformal finite difference time domain. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 21-55
    [10] Kong Yongdan, Chu Qingxin. Efficient unconditionally stable one step leapfrog ADI-FDTD method with low numerical dispersion[J]. IET microwave, antennas & propagation, 2014, 8(5): 337-345.
    [11] Dai J, Chen Z, Su D, et al. Stability analysis and improvement of the conformal ADI-FDTD methods[J]. IEEE Trans Antennas and Propagation, 2011, 59(6): 2248-2258. doi: 10.1109/TAP.2011.2143686
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1359
  • HTML全文浏览量:  342
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-24
  • 修回日期:  2018-03-24
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回