留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米结构泡沫金冲击响应的分子动力学模拟

刘伟 段晓溪 杨为明 刘浩 章欢 叶青 孙亮 王哲斌 江少恩

刘伟, 段晓溪, 杨为明, 等. 纳米结构泡沫金冲击响应的分子动力学模拟[J]. 强激光与粒子束, 2018, 30: 052002. doi: 10.11884/HPLPB201830.170478
引用本文: 刘伟, 段晓溪, 杨为明, 等. 纳米结构泡沫金冲击响应的分子动力学模拟[J]. 强激光与粒子束, 2018, 30: 052002. doi: 10.11884/HPLPB201830.170478
Liu Wei, Duan Xiaoxi, Yang Weiming, et al. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30: 052002. doi: 10.11884/HPLPB201830.170478
Citation: Liu Wei, Duan Xiaoxi, Yang Weiming, et al. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30: 052002. doi: 10.11884/HPLPB201830.170478

纳米结构泡沫金冲击响应的分子动力学模拟

doi: 10.11884/HPLPB201830.170478
基金项目: 

科学挑战专题资助项目 TZ2016001

详细信息
    作者简介:

    刘伟(1989—),男,博士,主要从事疏松物质物态方程研究;liuwei_sc@sina.cn

    通讯作者:

    江少恩(1964—),男,博士生导师,主要从事惯性约束聚变物理实验研究;jiangshn@vip.sina.com

  • 中图分类号: O539

Molecular dynamics simulations of shock response for nano-structure foamed gold

  • 摘要: 采用分子动力学计算程序对纳米结构泡沫金(Au)的冲击响应进行了模拟,得到了不同疏松度条件下泡沫Au的冲击压缩特性。通过获取不同势函数条件下实密Au的冲击Hugoniot关系以及泡沫结构稳定性测试选取适合描述Au泡沫冲击过程中原子的相互作用势。采用密堆积球壳的方式建立泡沫Au的初始构型。通过改变空心球壳的尺寸得到不同疏松度的稳定的泡沫Au结构。对泡沫Au的冲击过程进行分子动力学模拟,获得了不同疏松度泡沫Au在不同冲击压缩强度下的热力学状态参数。将模拟结果与已有的状态方程数据库以及疏松物质冲击压缩模型进行比较,结果表明,计算和理论模型给出的结果仍然存在明显的差异性,亟需通过进一步实验研究来验证模拟计算和理论模型结果的可靠性。
  • 图  1  不同Au原子EAM势函数模拟实密Au冲击Hugoniot关系与实验拟合曲线对比

    Figure  1.  Comparison between theory experiment fitting curve and simulated shock Hugoniot curve for solid gold by using different embedded atom method(EAM) potentials

    图  2  不同初始原子构型分子动力学弛豫后结果(YZ平面)。其中(a)为Olsson势函数弛豫后的构型,(b-e)为Zhakhovskii势函数弛豫后的构型

    Figure  2.  Nano-structure after energy minimization (view of YZ-plane). Image (a) is the energy minimization result by using Olsson potential, while images (b-e) is the results by using Zhakhovskii potential

    图  3  泡沫Au的冲击Hugoniot分子动力学模拟结果与QEOS和SESAME的对比

    Figure  3.  Comparison between shock Hugoniot simulation for foamed Au with QEOS and SESAME data

    图  4  模拟结果与Geng HY模型预测曲线的对比

    Figure  4.  Comparison between simulation results and prediction values by Geng HY model

    表  1  泡沫Au模型的参数表

    Table  1.   Parameters of foamed gold for shock response simulation

    initial thickness of shell d/nm initial outer-radius of shell D0/nm porosity/m atom numbers simulation box size nm
    1.3 8 2.146 2 429 272 1777 nm×222 nm×222 nm
    1.3 16 3.678 5 671 490 2701 nm×360 nm×360 nm
    1.3 20 4.385 7 445 416 2702 nm×450 nm×450 nm
    下载: 导出CSV
  • [1] Hall T, Batani D, Nazarov W, et al. Recent advances in laser-plasma experiments using foams[J]. Laser and Particle Beams, 2002, 20: 303-316. doi: 10.1017/S0263034602202220
    [2] Boade R R. Compression of porous copper by shock waves[J]. Journal of Applied Physics, 1968, 39(12): 5693-5702. doi: 10.1063/1.1656034
    [3] Rosen M D, Hammer J H. Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss[J]. Physical Review E, 2005, 72: 056403. doi: 10.1103/PhysRevE.72.056403
    [4] Young P E, Rosen M D, Hammer J H, et al. Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum[J]. Physical Review Letters, 2008, 101: 035001. doi: 10.1103/PhysRevLett.101.035001
    [5] Trunin R F, Zhernokletov M V, Simakov G V, et al. Shock compression of highly porous samples of copper, iron, nickel and their equation of state[C]//Shock Compression of Condense Matter. 1998: 83-86.
    [6] Wu Q, Jing F. Unified thermodynamic equation of state for porous materials in a wide pressure range[J]. Applied Physics Letters, 1995, 67(1): 49-51. doi: 10.1063/1.115488
    [7] Geng Huayun, Wu Qiang, Tan Hua, et al. Extension of the Wu-Jing equation of state(EOS) for highly porous materials: Thermoelectron based theoretical model[J]. Journal of Applied Physics, 2002, 92(10): 5924-5929. doi: 10.1063/1.1516619
    [8] Jian W R, Li B, Wang L, et al. Shock response of open-cell nanoporous Cu foams: Effects of porosity and specific surface area[J]. Journal of Applied Physics, 2015, 118: 165902. doi: 10.1063/1.4934244
    [9] Huang L, Han W Z, An Q, et al. Shock-induced consolidation and spallation of Cu nanopowders[J]. Journal of Applied Physics, 2012, 111: 013508. doi: 10.1063/1.3675174
    [10] Zhang L, Ding Y, Lin Z, et al. Demonstration of enhancement of X-ray flux with foam gold compared to solid gold[J]. Nuclear Fusion, 2016, 56: 036006. doi: 10.1088/0029-5515/56/3/036006
    [11] Plompton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117: 1-19. doi: 10.1006/jcph.1995.1039
    [12] Johnson A. Analytic nearest-neighbor model for fcc metals[J]. Physical Review B, 1988, 37(8): 3924-3931. doi: 10.1103/PhysRevB.37.3924
    [13] Luo S N, An Q, Germann T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates[J]. Journal of Applied Physics, 2009, 106: 013502. doi: 10.1063/1.3158062
    [14] Tan X, Niu G, Li K, et al. Preparation of monolithic foamed gold by seed-mediated growth[J]. Rare Metal Materials and Engineering, 2012, 40(1): 169-172. doi: 10.3969/j.issn.1002-185X.2012.01.038
    [15] Olsson P A T. Transverse resonant properties of strained gold nanowires[J]. Journal of Applied Physics, 2010, 108: 034318. doi: 10.1063/1.3460127
    [16] Zhakhovskii V V, Inogamov N A, Petrov Y V, et al. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials[J]. Applied Surface Science, 2009, 255: 9592-9596. doi: 10.1016/j.apsusc.2009.04.082
    [17] Yokoo M, Kawai N, Nakamura K G, et al. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa[J]. Physical Review B, 2009, 80: 104114. doi: 10.1103/PhysRevB.80.104114
    [18] Grochola G, Russo S P, Snook I K. On fitting a gold embedded atom method potential using the force matching method[J]. The Journal of Chemical Physics, 2005, 123: 204719. doi: 10.1063/1.2124667
    [19] Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69: 144113. doi: 10.1103/PhysRevB.69.144113
    [20] Adams J B, Foiles S M, Wolfer W G. Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method[J]. J Mater Res, 1988, 4(1): 102-112.
    [21] Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel[J]. Philosophical Magazine A, 1987, 56(6): 735-756. doi: 10.1080/01418618708204485
    [22] Liao Y, Xiang M, Zeng X, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum[J]. Mechanics of Materials, 2015, 84: 12-27. doi: 10.1016/j.mechmat.2015.01.007
    [23] Yokoo M, Kawai N, Nakamura K G, et al. Hugoniot measurement of gold at high pressures of up to 580 GPa[J]. Applied Physics Letters, 2008, 92: 051901. doi: 10.1063/1.2840189
    [24] Hodge A M, Biener J, Hayes J R, et al. Scaling equation for yield strength of nanoporous open-cell foams[J]. Acta Materialia, 2007, 55: 1343-1349. doi: 10.1016/j.actamat.2006.09.038
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1101
  • HTML全文浏览量:  248
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-24
  • 修回日期:  2018-01-23
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回