Molecular dynamics simulations of shock response for nano-structure foamed gold
-
摘要: 采用分子动力学计算程序对纳米结构泡沫金(Au)的冲击响应进行了模拟,得到了不同疏松度条件下泡沫Au的冲击压缩特性。通过获取不同势函数条件下实密Au的冲击Hugoniot关系以及泡沫结构稳定性测试选取适合描述Au泡沫冲击过程中原子的相互作用势。采用密堆积球壳的方式建立泡沫Au的初始构型。通过改变空心球壳的尺寸得到不同疏松度的稳定的泡沫Au结构。对泡沫Au的冲击过程进行分子动力学模拟,获得了不同疏松度泡沫Au在不同冲击压缩强度下的热力学状态参数。将模拟结果与已有的状态方程数据库以及疏松物质冲击压缩模型进行比较,结果表明,计算和理论模型给出的结果仍然存在明显的差异性,亟需通过进一步实验研究来验证模拟计算和理论模型结果的可靠性。
-
关键词:
- 纳米Au结构稳定性 /
- Au泡沫 /
- 分子动力学模拟 /
- 泡沫冲击Hugoniot曲线
Abstract: Different embeded-atom method potentials of gold were used in molecular dynamics simulation for shocked solid gold. Comparison between the simulation results and the experiment data of Hugoniot state for gold has been carried out. The potentials whose corresponding simulating shocked Hugoniot data are consistent with theoretical prediction were used in subsequent foamed gold simulations. The initial configuration of foamed gold has been constructed by means of randomly accumulating sphere shells in the simulation box. Three kinds of configuration have been obtained via changing the thickness, outer-radius of the sphere shell and potentials. Hugoniot states of porous polycrystal gold with 3-dimensional nanostructure under shock compression have been simulated by means of molecular dynamics(MD) method. Comparison between simulated results with porous equation of state(EOS) model and existing EOS database for Au has been done. The discrepancy suggests that experiments for the state of porous gold are necessary to verify the theory and the simulation method for porous gold. -
表 1 泡沫Au模型的参数表
Table 1. Parameters of foamed gold for shock response simulation
initial thickness of shell d/nm initial outer-radius of shell D0/nm porosity/m atom numbers simulation box size nm 1.3 8 2.146 2 429 272 1777 nm×222 nm×222 nm 1.3 16 3.678 5 671 490 2701 nm×360 nm×360 nm 1.3 20 4.385 7 445 416 2702 nm×450 nm×450 nm -
[1] Hall T, Batani D, Nazarov W, et al. Recent advances in laser-plasma experiments using foams[J]. Laser and Particle Beams, 2002, 20: 303-316. doi: 10.1017/S0263034602202220 [2] Boade R R. Compression of porous copper by shock waves[J]. Journal of Applied Physics, 1968, 39(12): 5693-5702. doi: 10.1063/1.1656034 [3] Rosen M D, Hammer J H. Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss[J]. Physical Review E, 2005, 72: 056403. doi: 10.1103/PhysRevE.72.056403 [4] Young P E, Rosen M D, Hammer J H, et al. Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum[J]. Physical Review Letters, 2008, 101: 035001. doi: 10.1103/PhysRevLett.101.035001 [5] Trunin R F, Zhernokletov M V, Simakov G V, et al. Shock compression of highly porous samples of copper, iron, nickel and their equation of state[C]//Shock Compression of Condense Matter. 1998: 83-86. [6] Wu Q, Jing F. Unified thermodynamic equation of state for porous materials in a wide pressure range[J]. Applied Physics Letters, 1995, 67(1): 49-51. doi: 10.1063/1.115488 [7] Geng Huayun, Wu Qiang, Tan Hua, et al. Extension of the Wu-Jing equation of state(EOS) for highly porous materials: Thermoelectron based theoretical model[J]. Journal of Applied Physics, 2002, 92(10): 5924-5929. doi: 10.1063/1.1516619 [8] Jian W R, Li B, Wang L, et al. Shock response of open-cell nanoporous Cu foams: Effects of porosity and specific surface area[J]. Journal of Applied Physics, 2015, 118: 165902. doi: 10.1063/1.4934244 [9] Huang L, Han W Z, An Q, et al. Shock-induced consolidation and spallation of Cu nanopowders[J]. Journal of Applied Physics, 2012, 111: 013508. doi: 10.1063/1.3675174 [10] Zhang L, Ding Y, Lin Z, et al. Demonstration of enhancement of X-ray flux with foam gold compared to solid gold[J]. Nuclear Fusion, 2016, 56: 036006. doi: 10.1088/0029-5515/56/3/036006 [11] Plompton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117: 1-19. doi: 10.1006/jcph.1995.1039 [12] Johnson A. Analytic nearest-neighbor model for fcc metals[J]. Physical Review B, 1988, 37(8): 3924-3931. doi: 10.1103/PhysRevB.37.3924 [13] Luo S N, An Q, Germann T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates[J]. Journal of Applied Physics, 2009, 106: 013502. doi: 10.1063/1.3158062 [14] Tan X, Niu G, Li K, et al. Preparation of monolithic foamed gold by seed-mediated growth[J]. Rare Metal Materials and Engineering, 2012, 40(1): 169-172. doi: 10.3969/j.issn.1002-185X.2012.01.038 [15] Olsson P A T. Transverse resonant properties of strained gold nanowires[J]. Journal of Applied Physics, 2010, 108: 034318. doi: 10.1063/1.3460127 [16] Zhakhovskii V V, Inogamov N A, Petrov Y V, et al. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials[J]. Applied Surface Science, 2009, 255: 9592-9596. doi: 10.1016/j.apsusc.2009.04.082 [17] Yokoo M, Kawai N, Nakamura K G, et al. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa[J]. Physical Review B, 2009, 80: 104114. doi: 10.1103/PhysRevB.80.104114 [18] Grochola G, Russo S P, Snook I K. On fitting a gold embedded atom method potential using the force matching method[J]. The Journal of Chemical Physics, 2005, 123: 204719. doi: 10.1063/1.2124667 [19] Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69: 144113. doi: 10.1103/PhysRevB.69.144113 [20] Adams J B, Foiles S M, Wolfer W G. Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method[J]. J Mater Res, 1988, 4(1): 102-112. [21] Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel[J]. Philosophical Magazine A, 1987, 56(6): 735-756. doi: 10.1080/01418618708204485 [22] Liao Y, Xiang M, Zeng X, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum[J]. Mechanics of Materials, 2015, 84: 12-27. doi: 10.1016/j.mechmat.2015.01.007 [23] Yokoo M, Kawai N, Nakamura K G, et al. Hugoniot measurement of gold at high pressures of up to 580 GPa[J]. Applied Physics Letters, 2008, 92: 051901. doi: 10.1063/1.2840189 [24] Hodge A M, Biener J, Hayes J R, et al. Scaling equation for yield strength of nanoporous open-cell foams[J]. Acta Materialia, 2007, 55: 1343-1349. doi: 10.1016/j.actamat.2006.09.038