留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的252Cf源驱动核材料浓度识别技术

陈乐林 魏彪 李鹏程 冯鹏 周密

陈乐林, 魏彪, 李鹏程, 等. 基于深度学习的252Cf源驱动核材料浓度识别技术[J]. 强激光与粒子束, 2018, 30: 096001. doi: 10.11884/HPLPB201830.170487
引用本文: 陈乐林, 魏彪, 李鹏程, 等. 基于深度学习的252Cf源驱动核材料浓度识别技术[J]. 强激光与粒子束, 2018, 30: 096001. doi: 10.11884/HPLPB201830.170487
Chen Lelin, Wei Biao, Li Pengcheng, et al. 252Cf-source-driven nuclear material concentration identification based on deep learning[J]. High Power Laser and Particle Beams, 2018, 30: 096001. doi: 10.11884/HPLPB201830.170487
Citation: Chen Lelin, Wei Biao, Li Pengcheng, et al. 252Cf-source-driven nuclear material concentration identification based on deep learning[J]. High Power Laser and Particle Beams, 2018, 30: 096001. doi: 10.11884/HPLPB201830.170487

基于深度学习的252Cf源驱动核材料浓度识别技术

doi: 10.11884/HPLPB201830.170487
基金项目: 

国家自然科学青年基金项目 11605017

详细信息
    作者简介:

    陈乐林(1991-), 男,硕士研究生,从事信号检测及信号处理研究;1369932914@qq.com

  • 中图分类号: TP301.6

252Cf-source-driven nuclear material concentration identification based on deep learning

  • 摘要: 针对核武器/核材料识别系统中核材料浓度识别的关键技术问题,采用Monte Carlo方法,通过建立252Cf源驱动核材料裂变中子信号样本库,模拟分析了随探测器距离和角度及核材料浓度变化的裂变脉冲中子信号特点,基于深度学习之卷积神经网络,构建了一种252Cf源驱动核材料浓度识别方法,实现了对测试样本浓度的识别,且还与BP神经网络和K最近邻方法进行了对比试验研究。结果表明,卷积神经网络算法进行核材料浓度识别,得到了高达92.05%识别准确率,不仅解决了因探测器距离和角度变化时对核材料浓度识别准确率影响的难题,而且还获得了优于BP神经网络和K最近邻算法对核材料浓度识别的认识,这为252Cf源驱动核材料浓度识别提供了一种新的途径。
  • 图  1  252Cf源驱动的三通道裂变中子脉冲信号测量系统示意图

    Figure  1.  Measurement model of 252Cf source spectrum measurement system

    图  2  卷积神经网络构建流程原理框图

    Figure  2.  Construction flow chart of convolutional neural network

    图  3  核材料浓度识别流程原理框图

    Figure  3.  Flow chart of nuclear material concentration identification

    图  4  训练样本计数时域分布随角度变化示意图

    Figure  4.  Count distribution of training samples varies with angle

    图  5  训练样本计数时域分布随浓度变化示意图

    Figure  5.  Count distribution of training samples varies with concentration

    图  6  训练样本计数时域分布随距离变化示意图

    Figure  6.  Count distribution of training samples varies with distance

    图  7  分帧处理原理图

    Figure  7.  Frame processing

    图  8  初始构建的卷积神经网络示意图

    Figure  8.  Initial construction of convolutional neural network

    图  9  权值调节因子取不同值的分类错误率

    Figure  9.  Classification error rate varies with weight adjustment factor

    图  10  学习率取不同值的分类错误率

    Figure  10.  Classification error rate varies with learning rate

    图  11  卷积核取不同个数的分类错误率

    Figure  11.  Classification error rate varies with number of kernels

    图  12  损失函数曲线

    Figure  12.  Curve of loss function

    表  1  不同实验得到的分类准确率一览表

    Table  1.   Classification accuracy of different experiments

    experiment error/%
    convolutional neural network 7.95
    BP neural network feature Ⅰ 37.95
    BP neural network feature Ⅱ 12.73
    K-nearest neighbor 37.5
    下载: 导出CSV
  • [1] 刘成安, 伍钧. 核军备控制核查技术概论[M]. 北京: 国防工业出版社, 2007: 26-40.

    Liu Cheng'an, Wu Jun. Nuclear arms control and verification technology concept. Beijing: National Defense Industry Press, 2007: 26-40
    [2] Mihalczo J T, Valentine T E, Mullens J A, et al. Physical and mathematical description of nuclear weapons identification system(NWIS) signatures[R]. The US Department of Energy Report No. Y/LB-15, 1997.
    [3] Mattingly J K, Valentine T E, Mihalczo J T. NWIS measurements for uranium metal annular castings[R]. The US Department of Energy Report No. Y/LB-15, 1998.
    [4] 冯鹏, 刘思远, 米德伶. 基于Elman神经网络的252Cf源和系统随机中子脉冲信号识别方法[J]. 强激光与粒子束, 2011, 23(8): 2224-2228. http://www.hplpb.com.cn/article/id/5395

    Feng Peng, Liu Siyuan, Mi Deling. Identification of stochastic neutron pulse signal of 252Cf nuclear system based on Elman neural network. High Power Laser and Particle Beams, 2011, 23(8): 2224-2228 http://www.hplpb.com.cn/article/id/5395
    [5] 杨帆, 魏彪, 冯鹏, 等. 互相关及高阶谱核材料富集度识别方法[J]. 强激光与粒子束, 2013, 25(4): 1026-1030. http://www.hplpb.com.cn/article/id/7415

    Yang Fan, Wei Bao, Feng Peng, et al. Nuclear material enrichment identification method based on cross-correlation and high order spectra. High Power Laser and Particle Beams, 2013, 25(4): 1026-1030 http://www.hplpb.com.cn/article/id/7415
    [6] 李鹏程, 魏彪, 冯鹏, 等. 基于压缩感知的252Cf源驱动核材料浓度识别技术研究[J]. 强激光与粒子束, 2015, 27: 074004. doi: 10.11884/HPLPB201527.074004

    Li Pengcheng, Wei Biao, Feng Peng, et al. 252Cf-source-driven nuclear material concentration identification based on compressive sensing. High Power Laser and Particle Beams, 2105, 27: 074004 doi: 10.11884/HPLPB201527.074004
    [7] 李玉鑑, 张婷. 深度学习导论及案例分析[M]. 北京: 机械工业出版社, 2016: 1-116.

    Li Yujian, Zhang Ting. Introduction to depth learning and case analysis. Beijing: China Machine Press, 2016: 1-116
    [8] Song I, Kimht J, Jeon P B. Deep learning for real-time robust facial expression recognition on a smart phone[C]//Proceedings of the 2014 IEEE International Conference on Consumer Electronics. 2014: 564-567.
    [9] Mesnil G, Dauphin Y, Yao K, et al. Using recurrent neural networks for slot filling in spoken language understanding[J]. IEEE Trans on Audio Speech and Language Processing, 2105, 23(3): 530-539.
    [10] Dahl G E, Yu D, Deng L, et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Trans Audio, Speech, and Language Processing, 2012, 20(1): 30-42. doi: 10.1109/TASL.2011.2134090
    [11] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Conference on Neural Information Processing Systems. 2012: 1097-1105.
    [12] Sun Yi, Wang Xiaogang, Tang Xiaoou. Deep learning face representation by joint identification-verification[J]. International Conference on Neural Information Processing Systems, 2014, 27: 1988-1996.
    [13] 刘明, 李国军, 郝华青, 等. 基于卷积神经网络的T波形态分类[J]. 自动化学报, 2016, 42(9): 1339-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609005.htm

    Liu Ming, Li Guojun, Hao Huaqing, et al. T wave shape classification based on convolutional neural network. Acta Automatica Sinica, 2016, 42(9): 1339-1346 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609005.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  881
  • HTML全文浏览量:  203
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-04-18
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回