Influence of series and parallel diodes in different positions on RF circuit
-
摘要: 分析了单支肖特基二极管以及串并联模拟预失真电路的幅度和相位的非线性特性,仿真结果表明可以将二极管作为模拟预失真电路可调节的核心器件。利用传输矩阵分析得出改变肖特基二极管在预失真电路的不同位置,及不同的串并联连接方式,可以使幅度相位补偿曲线得到改善。由仿真结果可以看出,在不同位置以串联或并联的形式在电路中连接二极管,可有效改变曲线的位置和斜率,从而得到理想的目标曲线形状。Abstract: In this paper, the nonlinear characteristics of the amplitude and phase of a single Schottky diode and series and parallel analog pre-distortion circuit are analyzed. The simulation results show that the diode can be used as an adjustable core component of an analog pre-distortion circuit. By using the transmission matrix, it is found that connecting the Schottky diodes in different positions of the predistortion circuit and selecting serial or parallel modes can improve the amplitude and phase compensation curves. The simulation results show that connecting a Schottky diode in series or in parallel at different positions of the circuit can effectively change the position and slope of the curve, so as to obtain an ideal target curve shape.
-
Key words:
- Schottky diode /
- series-parallel /
- pre-distortion /
- amplitude expansion /
- phase expansion
-
图 8 起始端串联二极管时幅相曲线变化图
Figure 8. Amplitude and phase changes curve while connecting a series Schottky diode in the starting circuit (A in Fig. 7)
图 9 起始端并联二极管时幅相曲线变化图
Figure 9. Amplitude and phase changes curve while connecting a parallel Schottky diode to the starting circuit (A in Fig. 7)
图 10 中间电路串联二极管时幅相曲线变化图
Figure 10. Amplitude and phase changes curve while connecting a series diode in the intermediate circuit (B in Fig. 7)
图 11 中间电路并联二极管时幅相曲线变化图
Figure 11. Amplitude and phase changes curve while connection a parallel diode in the intermediate circuit (B in Fig. 7)
图 12 终端串联二极管时幅相曲线变化图
Figure 12. Amplitude and phase changes curve while connecting a series diode in the terminal circuit (C in Fig. 7)
图 13 终端并联二极管时幅相曲线变化图
Figure 13. Amplitude and phase changes curve while connecting a parallel diode in the terminal circuit (C in Fig. 7)
-
[1] 李少岚, 延波, 李晨飞, 等. 采用二极管的模拟预失真毫米波功放线性化器[J]. 微波学报, 2012, 28(1): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201201018.htmLi Shaolan, Yan Bo, LI Chenfei, et al. Simulated predistortion millimeter-wave power amplifier linearizer with diodes. Journal of Microwaves, 2012, 28 (1): 70-72 https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201201018.htm [2] Katz A, Wood J, Chokola D. The evolution of PA linearization[J]. IEEE Microwave Magazine, 2016, 17(2): 32-40. doi: 10.1109/MMM.2015.2498079 [3] 胡欣, 王刚, 王自成, 等. 一种场效应管预失真电路对改善行波管非线性的作用[J]. 电子与信息学报, 2011, 33(4): 951-955. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201104032.htmHu Xin, Wang Gang, Wang Zicheng, et al. A FET predistortion circuit to improve the nonlinear TWT role. Journal of Electronics and Information Technology, 2011, 33 (4): 951-955 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201104032.htm [4] 李文朝, 周东方, 张德伟, 等. 基于二极管Ka波段的新型可调预失真器[J]. 强激光与粒子束, 2014, 26: 113004. doi: 10.11884/HPLPB201426.113004Li Wenchao, Zhou Dongfang, Zhang Dewei, et al. A novel tunable predistorter based on the Ka band of diodes. High Power Laser and Particle Beams, 2014, 26: 113004 doi: 10.11884/HPLPB201426.113004 [5] 陈欣鹏, 周东方, 张德伟, 等. 一种Ku波段空间行波管预失真器[J]. 微波学报, 2013, 29(2): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201302021.htmChen Xinpeng, Zhou Dongfang, Zhang Dewei, et al. A kind of Ku-band TWT pre-distorter. Journal of Microwaves, 2013, 29(2): 87-90 https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201302021.htm [6] Pedro J C. The wonderful world of nonlinearity[J]. IEEE Microwave Magazine, 2015, 16(9): 22-35. doi: 10.1109/MMM.2015.2453871 [7] Katz A, Chokola D. The evolution of linearizers for high power amplifiers[C]//IEEE Microwave Symposium. 2015: 1-4. [8] Aladrén L, García-Dúcar P, Mingo J D, et al. Digital predistortion using non-stationary windowed sequences for LTE power amplifier linearization[C]//IEEE Microwave Symposium Digest. 2012: 1-3. [9] Swaminathan J N, Kumar P. Design and linearization of solid state power amplifier using pre-distortion technique[C]//IEEE International Conference on Computer Communication and Informatics. 2013: 1-3. [10] Hammi O. Efficient linear amplification using digitally predistorted overdriven power amplifiers[J]. IEEE Trans Broadcasting, 2015, 61(3): 398-406. doi: 10.1109/TBC.2015.2419191 期刊类型引用(9)
1. 任天佑,严宇,刘康凯,王路伽,祁江浩,王世卓. 适用于煤层瓦斯增透的高压脉冲放电关键技术研究. 电气防爆. 2024(01): 14-20 . 百度学术
2. 刘毅,廖洪彬,程晋,李柳霞,林福昌,赵勇. 脉冲放电破岩等离子体通道长度预测方法. 强激光与粒子束. 2024(05): 151-159 . 本站查看
3. 郭军,米鑫程,冯国瑞,白锦文,文晓泽,朱林俊,王子,皇文博. 基于液电效应的高压电脉冲岩体致裂特征及机理. 煤炭学报. 2024(05): 2270-2282 . 百度学术
4. 金玉静,王大庆,陆皓. GTAW自激发超声工艺对AISI 316不锈钢堆焊层的有效性分析. 热加工工艺. 2024(12): 133-138+144 . 百度学术
5. 马宁,邓岳,凌雪,杨麟睿,钱阳,刘毅,黄仕杰. 高压脉冲放电在大直径扩底灌注桩中的应用技术研究. 钻探工程. 2024(06): 152-159 . 百度学术
6. 赵景林,王志强,王进君,张东东,李国锋. 基于Kriging模型的水中放电沉积能量优化分析. 强激光与粒子束. 2023(03): 149-158 . 本站查看
7. 孙树强,王来东. 改进SPWM脉冲技术的多电平逆变器功率控制仿真. 计算机仿真. 2023(09): 66-69+75 . 百度学术
8. 余庆,张辉,杨睿智. 基于LS-DYNA的液电效应冲击波数值模拟. 爆炸与冲击. 2022(02): 128-139 . 百度学术
9. 康忠健,王聪,聂云良,邵在康,龚大建. 非常规储层电脉冲共振增产技术研究与应用. 强激光与粒子束. 2021(06): 82-87 . 本站查看
其他类型引用(7)
-