留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层流等离子体制备球形氧化铝粉末的实验研究

江汇 余德平 吕程 熊志强 姚进

江汇, 余德平, 吕程, 等. 层流等离子体制备球形氧化铝粉末的实验研究[J]. 强激光与粒子束, 2018, 30: 079002. doi: 10.11884/HPLPB201830.170500
引用本文: 江汇, 余德平, 吕程, 等. 层流等离子体制备球形氧化铝粉末的实验研究[J]. 强激光与粒子束, 2018, 30: 079002. doi: 10.11884/HPLPB201830.170500
Jiang Hui, Yu Deping, Lü Cheng, et al. Experimental study on preparation of spherical alumina powder by laminar plasma jet[J]. High Power Laser and Particle Beams, 2018, 30: 079002. doi: 10.11884/HPLPB201830.170500
Citation: Jiang Hui, Yu Deping, Lü Cheng, et al. Experimental study on preparation of spherical alumina powder by laminar plasma jet[J]. High Power Laser and Particle Beams, 2018, 30: 079002. doi: 10.11884/HPLPB201830.170500

层流等离子体制备球形氧化铝粉末的实验研究

doi: 10.11884/HPLPB201830.170500
基金项目: 

四川省科技厅高新技术发展与产业化重点研究项目 2017GZ0096

详细信息
    作者简介:

    江汇(1990-),男,硕士研究生,从事非转移弧等离子体在制备球形微纳米粉末材料领域的设备开发与工艺研究;jimmy125099@163.com

    通讯作者:

    余德平(1984-),男,副教授,博士,主要研究领域包括先进制造技术、等离子体技术及应用等;williamydp@scu.edu.cn

  • 中图分类号: TF123

Experimental study on preparation of spherical alumina powder by laminar plasma jet

  • 摘要: 为研究非转移弧层流等离子体制备面向新材料领域的μm级球形氧化铝粉末的能力,使用自制的非转移弧分段式阳极层流等离子体球化设备,以载气送粉的方式,对η相的不规则μm级三氧化二铝粉末进行等离子体球化处理,并采用均匀设计法,研究等离子体发生器和送粉器不同的工作参数对氧化铝粉末球化率的影响规律。结果表明,实验所采用的直流非转移弧层流等离子体发生器能有效制备球化率接近100%的高球化率球形氧化铝粉末。实验发现,高球化率、高分散性和粒径大小均匀的球形氧化铝粉末可在不同工艺参数组合下制备,并证明了采用非转移弧分段式阳极层流等离子体发生器可实现较低功率下制备较高球化率球形氧化铝的可行性。实验还通过XRD与PDF卡片索引技术对球化前后的氧化铝粉末进行了物相定性分析,发现η相的氧化铝粉末经射流作用转化成了Corundum型的氧化铝粉末。
  • 图  1  分段式阳极层流等离子体发生器结构示意图

    Figure  1.  Schematic diagram of a laminar plasma torch with a segmented anode

    图  2  层流等离子体射流图片(I=80 A; Qw=14 L/min)

    Figure  2.  Image of a laminar plasma jet

    (working current I=80 A; working gas flow Qw=14 L/min)

    图  3  层流等离子体球化系统示意图

    Figure  3.  Schematic diagram of a laminar plasma spheroidization system

    图  4  在光学显微镜下原料氧化铝粉末的表面形貌

    Figure  4.  Surface morphology of the raw alumina powder under the optical microscope

    图  5  球化率高于接近100%的球形粉末在光学显微镜下的表面形貌

    Figure  5.  Microscopic images of the treated powders with spheroidization rate(Rs) close to 100%

    图  6  原料氧化铝的XRD图谱

    Figure  6.  XRD patterns of the raw alumina powder

    图  7  氧化铝粉末的XRD图谱

    Figure  7.  XRD patterns of the theated powders

    图  8  球化率随等离子体发生器和送粉器工作参数变化的变化规律

    Figure  8.  Change of Rs with the working parameters of plasma torch and powder feeder

    表  1  送粉器送粉速率

    Table  1.   Powder feeding rate of the powder feeder

    Qc/(L/h) U/V vp(g/min)
    50 1 6.2
    50 2 11.2
    50 3 16.6
    100 1 8.6
    100 2 10.4
    100 3 15.3
    200 1 7.6
    200 2 11.8
    200 3 15.3
    下载: 导出CSV
  • [1] 李建忠. 导热绝缘硅胶材料用氧化铝性能研究[J]. 轻金属, 2012(3): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201203004.htm

    Li Jianzhong. Study on alumina properties for heat conductive insulating silicone rubber. Light Metals, 2012(3): 11-13 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201203004.htm
    [2] Cao Y, Ma C, Fei T, et al. Effect of main operating parameters on Al2O3, spheroidization by radio frequency plasma system[J]. Rare Metal Materials and Engineering, 2017, 46(2): 333-338. doi: 10.1016/S1875-5372(17)30090-5
    [3] Hu Peng, Yan Shikai, Yuan Fangli, et al. Effect of plasma spheroidization process on the microstructure and crystallographic phases of silica, alumina and nickel particles[J]. Plasma Science and Technology, 2007, 9(5): 611. doi: 10.1088/1009-0630/9/5/20
    [4] Ye R, Ishigaki T, Jurewicz J, et al. In-flight spheroidization of alumina powders in Ar-H2, and Ar-N2, induction plasmas[J]. Plasma Chemistry and Plasma Processing, 2004, 24(4): 555-571. doi: 10.1007/s11090-004-7932-8
    [5] Károly Z, Szépvölgyi J. Plasma spheroidization of ceramic particles[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(2): 221-224. doi: 10.1016/j.cep.2004.02.015
    [6] 闫世凯, 袁方利, 胡鹏, 等. RF等离子体球化制备球形氧化铝和氧化硅[C]//第十四届全国复合材料学术会议, 2006.

    Yan Shikai, Yuan Fangli, Hu Peng, et al. Preparation of spherical SiO2 and Al2O3 powders in rf thermal plasma. Proc of 14th National Conference on Composite Material. 2006
    [7] Chaturvedi V, Ananthapadmanabhan P V, Chakravarthy Y, et al. Thermal plasma spheroidization of aluminum oxide and characterization of the spheroidized alumina powder[J]. Ceramics International, 2014, 40(6): 8273-8279. doi: 10.1016/j.ceramint.2014.01.026
    [8] 钟良, 侯力, 古忠涛. 射频感应等离子体制备球形氧化铝的工艺研究[J]. 强激光与粒子束, 2014, 26: 089003. doi: 10.11884/HPLPB201426.089003

    Zhong Liang, Hou Li, Gu Zhongtao. Preparation procedure for spherical alumina by RF induction plasma. High Power laser and Particle Beams, 2014, 26: 089003 doi: 10.11884/HPLPB201426.089003
    [9] 朱海龙, 叶高英, 程昌明, 等. 射频耦合Ar-O2热等离子体制备微米级球形氧化铝粉末[C]//全国等离子体医学研讨会会议. 2013.

    Zhu Hailong, Ye Gaoying, Cheng Changming, et al. Preparation of micron spherical alumina powder by RF coupled Ar-O2 thermal plasma//National Symposium on Plasma Medicine. 2013
    [10] Lee W, Choi S, Oh S M, et al. Preparation of spherical hollow alumina particles by thermal plasma[J]. Thin Solid Films, 2013, 529: 394-397. doi: 10.1016/j.tsf.2012.05.048
    [11] Suresh K, Selvarajan V, Vijay M. Synthesis of nanophase alumina, and spheroidization of alumina particles, and phase transition studies through DC thermal plasma processing[J]. Vacuum, 2008, 82(8): 814-820. doi: 10.1016/j.vacuum.2007.11.008
    [12] Cao Xiuquan, Yu Deping, Xiao Meng, et al. Design and characteristics of a laminar plasma torch for materials processing[J]. Plasma Chemistry and Plasma Processing, 2016, 36(2): 693-710. doi: 10.1007/s11090-015-9661-6
    [13] Cao Xiuquan, Yu Deping, Xiang Yong, et al. Influence of the laminar plasma torch construction on the jet characteristics[J]. Plasma Science and Technology, 2016, 18(7): 740-743. doi: 10.1088/1009-0630/18/7/07
    [14] Gavrilova R, Hadzhiyski V. Synthesis and spheroidization of disperse high-melting (refractory) powders in plasma discharge[J]. Annals of the University Dunarea De Jos of Galati Fascicle IX, 2011, 29(3): 66-70.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1202
  • HTML全文浏览量:  326
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-12
  • 修回日期:  2018-03-15
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回