留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CSNS/RCS次级准直器吸收体的冷却设计

余洁冰 吴青彪 吴煊 王娜 陈佳鑫 王广源 张俊嵩 康玲

余洁冰, 吴青彪, 吴煊, 等. CSNS/RCS次级准直器吸收体的冷却设计[J]. 强激光与粒子束, 2018, 30: 085105. doi: 10.11884/HPLPB201830.170504
引用本文: 余洁冰, 吴青彪, 吴煊, 等. CSNS/RCS次级准直器吸收体的冷却设计[J]. 强激光与粒子束, 2018, 30: 085105. doi: 10.11884/HPLPB201830.170504
Yu Jiebing, Wu Qingbiao, Wu Xuan, et al. Cooling design of secondary collimator absorbers at CSNS/RCS[J]. High Power Laser and Particle Beams, 2018, 30: 085105. doi: 10.11884/HPLPB201830.170504
Citation: Yu Jiebing, Wu Qingbiao, Wu Xuan, et al. Cooling design of secondary collimator absorbers at CSNS/RCS[J]. High Power Laser and Particle Beams, 2018, 30: 085105. doi: 10.11884/HPLPB201830.170504

CSNS/RCS次级准直器吸收体的冷却设计

doi: 10.11884/HPLPB201830.170504
基金项目: 

国家自然科学基金项目 11375217

详细信息
    作者简介:

    余洁冰(1987—), 女, 工程师, 从事准直器系统的研制; yujb@ihep.ac.cn

  • 中图分类号: TL503

Cooling design of secondary collimator absorbers at CSNS/RCS

  • 摘要: 作为CSNS/RCS横向束流准直系统的关键部件,次级准直器用于吸收经主准直器散射后不在预定轨道的束晕粒子,其工作原理决定了该设备要求满足强辐射环境下的稳定性、超高真空及高定位精度等要求。基于主准直器的设计及研制经验,对次级准直器结构方案及控制系统进行详细设计。针对关键部件吸收体,结合辐射防护分析结果,考虑水冷降温的方式,设计了控制程序,通过有限元分析软件ANSYS对其进行瞬态热分析,保证吸收体设计的可行性。
  • 图  1  挡块横截面示意图

    Figure  1.  Cross section of the absorber block

    图  2  吸收体结构示意图

    Figure  2.  Structure of the absorber

    图  3  第一个次级准直器运行100 d,停机4 h后剩余剂量

    Figure  3.  Residual dose of the first secondary collimator which had been operating 100 d at 4 h after shutdown

    图  4  不考虑强制冷却的稳态热分析结果

    Figure  4.  Static thermal analysis result without forced cooling

    图  5  次级准直器总沉积功率为2 kW×4时散热片空隙中的瞬发剂量率与隧道1 W/m均匀束损时的比较

    Figure  5.  Comparison of prompt dose rate between RCS tunnel air at 1 W/m and RCS secondary collimators' air at 2 kW×4

    图  6  次级准直器控制框图

    Figure  6.  Control system of secondary collimator

    图  7  吸收器瞬态热分析结果

    Figure  7.  Transient thermal analysis result of the absorber

    图  8  加工的吸收体

    Figure  8.  Machined absorbers

    表  1  风扇风速为5 m/s时,排放到环境中的活化核素与RCS隧道保持负压的排风(1次/h)的活化核素比值

    Table  1.   Ratio of the active nuclide at the air flow speed of 5 m/s

    mass number element proton number half life T saturate activity concentrations S(reduced) total activate nuclide with 6000 h operation each year activity ratio between RCS 2nd collimators’air with funs’ running and RCS tunnel
    3 H 1 3.89×108 3.80×10-8 2.12×102 1.60×10-4
    6 He 2 8.07×10-1 4.01×10-1 2.24×109 4.25×10-1
    8 Li 3 8.38×10-1 1.32×100 7.38×109 4.11×10-1
    7 Be 4 4.60×106 9.80×10-7 5.47×103 1.60×10-4
    8 Be 4 6.71×10-17 1.28×10+1 7.17×1010 3.03×100
    8 B 5 7.70×10-1 4.17×10-1 2.33×109 4.42×10-1
    12 B 5 2.02×10-2 9.01×100 5.04×1010 2.63×100
    13 B 5 1.74×10-2 7.49×10-1 4.18×109 2.68×100
    10 C 6 1.93×101 7.33×10-2 4.09×108 2.07×10-2
    11 C 6 1.22×103 6.03×10-3 3.37×107 4.85×10-4
    14 C 6 1.81×1011 1.19×10-10 6.66×10-1 1.60×10-4
    13 N 7 5.98×102 3.33×10-2 1.86×108 8.26×10-4
    16 N 7 7.13×100 1.22×10-1 6.84×108 5.50×10-2
    14 O 8 7.06×101 4.15×10-2 2.32×108 5.79×10-3
    15 O 8 1.22×102 6.58×10-2 3.67×108 3.42×10-3
    39 Cl 17 3.34×103 5.85×10-5 3.27×105 2.79×10-4
    37 Ar 18 3.03×106 3.79×10-8 2.12×102 1.60×10-4
    39 Ar 18 8.48×109 2.05×10-11 1.14×10-1 1.60×10-4
    41 Ar 18 6.56×103 9.95×10-5 5.56×105 2.20×10-4
    下载: 导出CSV
  • [1] Wang Sheng, Fang Shouxian, Fu Shinian, et al. Introduction to the overall physics design of CSNS accelerators[J]. Chinese Physics C, 2009, 33(2): 1-3.
    [2] Wei Tao, Qin Qin. Design of the two-stage collimation system for CSNS/RCS[J]. Nucl Instr Meth Phys Res A, 2006, 566(2): 212-217.
    [3] 魏涛. 中国散裂中子源快循环同步加速器束损研究[D]. 北京: 中国科学院高能物理研究所, 2008: 53-55.

    Wei Tao. Beam loss studies on the rapid cycling synchrotron of China Spallation Neutron Source. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2008: 53-55
    [4] Wang Na, Wang Sheng, Huang Nan, et al. The design of beam collimation system for CSNS/RCS[C]//Proceedings of HB2010. 2010: 572-575.
    [5] Accelerator Group. JAERI/KEK Joint Project Team. Accelerator technical design report for J-PARC[R/OL]. http://JAERI-TECH-2003-044,2003.
    [6] Yamamoto K, Okazaki M, Hirooka Y, et al. Present status of beam collimation system of J-PARC RCS[C]//Proceedings of EPAC 2006. 2006: 3200-3202.
    [7] Yamamoto K, Kinsho M. Development of the collimator system for the 3GeV rapid cycling synchrotron[C]//Proceedings of 2005 Particle Accelerator Conference. 2005: 1365-1367.
    [8] 邹易清, 康玲, 屈化民, 等. 中国散裂中子源快循环同步加速器主准直器的设计与研究[J]. 强激光与粒子束, 2013, 25(3): 741-745. doi: 10.3788/HPLPB20132503.0741

    Zou Yiqing, Kang Ling, Qu Huamin, et al. Chromatic correction for CSNS/RCS and nonlinear effects of chromaticity sextupoles. High Power Laser and Particle Beams, 2013, 25(3): 741-745 doi: 10.3788/HPLPB20132503.0741
    [9] 邹易清. 中国散裂中子源主准直器的设计与研制[D]. 北京: 中国科学院高能物理研究所, 2013: 15-20.

    Zou Yiqing. Design and development of the primary collimator for CSNS. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2013: 15-20
    [10] 吴青彪. 中国散裂中子源的感生放射性研究[D]. 北京: 中国科学院高能物理研究所, 2014: 119-125.

    Wu Qingbiao. Study on induced radioactivity of China Spallation Neutron Source. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2014: 119-125
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1294
  • HTML全文浏览量:  227
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-15
  • 修回日期:  2018-02-11
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回