-
摘要: 高功率微波的研究正在向高重复频率发展,目前已运行每年百万炮次或以上的水平,由此导致的电子束轫致辐射产生的X射线剂量已不可忽视,为了人员安全必须采取屏蔽措施。采用BEAMnrc程序,用蒙特卡罗方法仿真了环状束高功率微波源收集极的射线产生情况,典型输入束流参数为电压1 MV,电流10 kA,脉宽100 ns,重复频率100 Hz。仿真结果给出了X射线的谱分布和空间分布。据此估算了屏蔽X射线所需的墙壁衰减量。同时估算了X射线的天空散射因素以及房顶所需的衰减量。Abstract: High power microwave research is moving into the high rep-rate regime and it will be common that an electron beam accelerator operates more than a million shots per year. As a result, accumulated bremsstrahlung X-ray produced by the electron beam collector is no longer negligible, and shielding is necessary for personnel safety. By using the BEAMnrc Monte-Carlo code, a typical collector for a ring beam usually used in HPM tube is simulated, which has beam voltage 1 MV, beam current 10 kA, pulse duration 100 ns and rep-rate 100 Hz. The results show the spectrum and spatial distribution of the X-ray generated at the collector. The attenuation factor of the X-ray is estimated from the simulation. The estimation of the skyshine radiation is also considered for the roof of the building.
-
Figure 4. Mass attenuation coefficient for ordinary concrete[7]
Table 1. Statistical fluence at scoring plane 1 m from the collector
zone number of photons fluence/cm-2 photon energy/MeV angle with z-axis/(°) 1 7.890E-04(1±3.56%) 6.355E-07(1±3.56%) 0.248(1±2.4%) 8.220(1±1.4%) 2 2.001E-03(1±2.24%) 5.580E-07(1±2.24%) 0.251(1±1.5%) 17.605(1±0.4%) 3 2.595E-03(1±1.96%) 4.637E-07(1±1.96%) 0.252(1±1.3%) 26.782(1±0.2%) 4 2.584E-03(1±1.97%) 3.592E-07(1±1.97%) 0.244(1±1.3%) 34.961(1±0.2%) 5 2.203E-03(1±2.13%) 2.629E-07(1±2.13%) 0.237(1±1.4%) 42.051(1±0.1%) 6 1.880E-03(1±2.30%) 2.027E-07(1±2.31%) 0.236(1±1.5%) 47.751(1±0.1%) 7 1.580E-03(1±2.51%) 1.590E-07(1±2.52%) 0.228(1±1.6%) 52.451(1±0.1%) 8 1.314E-03(1±2.76%) 1.259E-07(1±2.76%) 0.231(1±1.8%) 56.322(1±0.1%) 9 1.025E-03(1±3.12%) 9.493E-08(1±3.12%) 0.217(1±2.0%) 59.592(1±0.1%) 10 8.830E-04(1±3.36%) 7.958E-08(1±3.37%) 0.235(1±2.2%) 62.265(1±0.1%) 11 7.820E-04(1±3.57%) 6.928E-08(1±3.58%) 0.231(1±2.3%) 64.642(1±0.1%) 12 6.540E-04(1±3.91%) 5.699E-08(1±3.91%) 0.215(1±2.6%) 66.579(1±0.0%) 13 5.590E-04(1±4.23%) 4.807E-08(1±4.23%) 0.219(1±2.7%) 68.250(1±0.0%) 14 4.620E-04(1±4.65%) 3.931E-08(1±4.65%) 0.212(1±3.0%) 69.714(1±0.0%) 15 4.050E-04(1±4.97%) 3.431E-08(1±4.97%) 0.223(1±3.2%) 71.080(1±0.0%) 16 5.690E-04(1±4.19%) 2.542E-08(1±4.20%) 0.207(1±2.6%) 73.062(1±0.1%) -
[1] Benford J, Swegle J A, Shamiloglu E. High power microwaves[M]. 2nd ed. New York: Taylor & Francis, 2007. [2] Zhang Jiande, Ge Xingjun, Zhang Jun et al. Research progress on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter and Radiation at Extremes, 2016, 1(3): 163-173. [3] Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J]. Laser and Particle Beams, 2003, 21: 197-209. [4] GB 18871-2002, Basic standards for protection against ionizing radiation and for the safety of radiation sources[S]. [5] National Council on Radiation Protection and Measurements. Structural shielding design and evaluation for megavoltage X- and gamma-ray radiotherapy facilities[R]. NCRP Report No. 151, 2005. [6] Rogers D W O, Walters B, Kawrakow I. BEAMnrc User's Manual[R]. NRC Report PIRS-509A (rev L), 2013. [7] NIST SRD126. Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients[DB/OL]. https://www.nist.gov/ pml/x-ray-mass-attenuation-coefficients.