High-gain terahertz folded waveguide slow wave structure
-
摘要: 提出采用分段变参数型折叠波导慢波结构提高器件增益的新方法。结合小信号理论分析和束-波互作用的三维PIC数值模拟,进行分段变参数型慢波结构的理论设计研究。通过0.345 THz两段式折叠波导慢波结构的设计实现和模拟验证,结果证明, 相同的电子注工作条件下,两段式慢波结构的电子转化效率和饱和功率相对于传统均匀型慢波结构提高了94%,并可以推广应用到多段式。Abstract: This paper proposes a new type of folded waveguide slow-wave structure with variable parameters, which can greatly increase the device's saturation gain. Combining small-signal theory analysis and three-dimensional PIC numerical simulation of beam-wave interaction process, the paper also proposes a theoretical design method for this variable-parameter slow-wave structure. A 0.345 THz two-stage folded waveguide slow-wave structure is designed and simulated, which proves that the two-stage slow-wave structure has higher electron conversion efficiency and saturation gain than the conventional uniform slow-wave structure under the same working conditions and can be widely applied to multi-stage structures.
-
表 1 传统均匀型慢波结构模型参数
Table 1. Parameters of traditional folded waveguide slow wave structure
a1/mm b1/mm p1/mm h1/mm D1/mm beam voltage/kV 0.49 0.085 0.16 0.15 0.10 17.0(18.6) 表 2 第二段折叠波导慢波结构参数
Table 2. Parameters of the second section of folded waveguide slow wave structure
a2/mm b2/mm p2/mm h2/mm D2/mm 0.49 0.085 0.155(0.15) 0.15 0.10 -
[1] Srivastava A. Microfabricated terahertz vacuum electron devices: technology capabilities and performance overview[J]. European Journal of Advances in Engineering and Technology, 2015, 2(8): 54-64. [2] Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Trans Terahertz Sci Tec, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610 [3] Booske J H. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation[J]. Phys Plasmas, 2008, 15: 055502. doi: 10.1063/1.2838240 [4] Kory C L, Read M E, Ives R L, et al. Design of overmoded interaction circuit for 1-kW 95 GHz TWT[J]. IEEE Trans Electron Devices, 2009, 56(5): 713-720. doi: 10.1109/TED.2009.2015405 [5] Joye C D, Cook A M, Calame J P, et al. Demonstration of a high power, wideband 220 GHz traveling wave amplifier fabricated by UV-LIGA[J]. IEEE Trans Electron Devices, 2014, 61(6): 1672-1678. doi: 10.1109/TED.2014.2300014 [6] Dohler G, Gagne D, Gallagher D, et al. Serpentine waveguide TWT[J]. IEEE International Electron Devices Meeting, 1987, 33(1): 478-488. [7] David J F, Alain J D, Mineo M, et al. Design of a terahertz cascade backward wave amplifier[J]. IEEE Trans Electron Devices, 2014, 61(6): 1715-1720. doi: 10.1109/TED.2014.2303142 [8] Nguyen K T, Vlasov A N, Ludeking L, et al. Design methodology and experimental verification of serpentine/folded-waveguide TWTs[J]. IEEE Trans Electron Devices, 2014, 61(6): 1679-1686. doi: 10.1109/TED.2014.2303711 [9] Bhattacharjee S, Booske J H, Kory C L. Folded waveguide traveling-wave tube sources for terahertz radiation[J]. IEEE Trans Plasma Sci, 2004, 32(3): 1002-1014. doi: 10.1109/TPS.2004.828886 [10] Gensheimer P D, Walker C K, Ziolkowski R W, et al. Full-scale three-dimensional electromagnetic simulations of a terahertz folded-waveguide traveling-wave tube using ICEPIC[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 222-230. doi: 10.1109/TTHZ.2011.2178931 [11] Ha H J, Han W K, Park G S, et al. Nonlinear theory of folded waveguide TWT[C]//IEEE International Vacuum Electronics Conference. 2000. [12] Ha H J, Jung S S, Park G S. Linear theory of a folded waveguide traveling-wave tube[J]. Journal of the Korean Physical Society, 1999, 33(3): 297-300. [13] Booske J H, Converse M C, Kory C L, et al. Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes[J]. IEEE Trans Electron Devices, 2005, 52(5): 685-693. doi: 10.1109/TED.2005.845798