留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体布拉格光栅滤波片及其光谱成像应用

段佳著 赵祥杰 胡奇琪 吴凡 骆永全 张大勇

段佳著, 赵祥杰, 胡奇琪, 等. 体布拉格光栅滤波片及其光谱成像应用[J]. 强激光与粒子束, 2018, 30: 079001. doi: 10.11884/HPLPB201830.180023
引用本文: 段佳著, 赵祥杰, 胡奇琪, 等. 体布拉格光栅滤波片及其光谱成像应用[J]. 强激光与粒子束, 2018, 30: 079001. doi: 10.11884/HPLPB201830.180023
Duan Jiazhu, Zhao Xiangjie, Hu Qiqi, et al. Volume Bragg grating filters and its spectral imaging application[J]. High Power Laser and Particle Beams, 2018, 30: 079001. doi: 10.11884/HPLPB201830.180023
Citation: Duan Jiazhu, Zhao Xiangjie, Hu Qiqi, et al. Volume Bragg grating filters and its spectral imaging application[J]. High Power Laser and Particle Beams, 2018, 30: 079001. doi: 10.11884/HPLPB201830.180023

体布拉格光栅滤波片及其光谱成像应用

doi: 10.11884/HPLPB201830.180023
基金项目: 

国家自然科学基金项目 61575179

中国工程物理研究院科技发展基金项目 2015B0401082

详细信息
    作者简介:

    段佳著(1989-),男,硕士,助理研究员,主要从事光束精密控制和光谱成像方面的研究;jzduan_oe@163.com

    通讯作者:

    张大勇(1975-),男,博士,研究员,主要从事激光与物质相互作用领域研究;zdywxl874@sohu.com

  • 中图分类号: O436

Volume Bragg grating filters and its spectral imaging application

  • 摘要: 利用厚体布拉格光栅的波长选择特性对目标光场进行窄带滤波,是实现高光谱成像的一种新途径。基于严格耦合波理论,设计了体布拉格光栅结构,探索了厚体布拉格光栅的制作工艺,搭建系统光路验证了体布拉格光栅的光谱成像能力。研究结果表明:要获得较窄滤波谱宽,需要提高体布拉格光栅的厚度周期比,并严格控制入射光束发散角;刻写光束质量、震动和偏振会极大地影响制作的光栅条纹面质量,需要从优化写入光的光束均匀性、采用防震措施以及调整两刻写光束偏振一致性等方面优化刻写过程,以提高光栅的衍射效率和质量;验证了体布拉格光栅滤波片进行空间二维面阵成像的能力,宽谱光源透射条件下,通过对入射光束进行准直,滤波谱宽5 nm左右,空间分辨率约4 lines/mm;漫反射条件下,使用体布拉格光栅对进行色散补偿,能够实现较为清晰的成像,空间分辨率约4.9 lines/mm。
  • 图  1  体布拉格光栅结构和波矢关系示意图

    Figure  1.  Structure scheme of volume Bragg grating (VBG) and vector relations in it

    图  2  (a) 不同厚度周期比时的波长选择性曲线;(b)沿光栅厚度方向不同位置处各级次衍射光相对强度

    Figure  2.  (a)Wavelength selectivity curves of VBGs under different ratio of grating thickness and period; (b)diffraction efficiency of different diffraction orders along the direction of grating thickness

    图  3  不同发散角时滤波谱宽比较

    Figure  3.  Filter spectral bandwidth under different divergence angles

    图  4  实验光路示意图和PQ/PMMA聚合物透过率曲线

    Figure  4.  Experimental optical path distribution and transmission ratio of PQ/PMMA polymer

    图  5  (a) 震动和(b)偏振一致性对衍射效率的影响

    Figure  5.  Effect of (a) vibration and (b) polarization on the diffraction efficiency

    图  6  (a) 光束质量对衍射效率的影响;写入光束优化(b)前(c)后的体光栅的衍射光斑

    Figure  6.  (a) Effect of writing light beam quality on the diffraction efficiency, diffraction light facula with grating (b) before and (c) after the writing light beam quality optimization

    图  7  基于体布拉格光栅的滤波成像系统图

    Figure  7.  Spectral imaging system based on VBG

    图  8  (a) 透射式分辨率板成像结果;(b)滤波谱宽测量结果

    Figure  8.  (a) Imaging results of transmission resolution plate and (b) measurement of filtered bandpass

    图  9  典型的RGB谱段位置的反射式分辨率板光谱成像结果

    Figure  9.  Spectral images of reflection-type resolution plate at different RGB central wavelength

  • [1] Geissler P E, Greenberg R, Hoppa G, et al. Evolution of lineaments on Europa: Clues from Galileo multispectral imaging observa-tions[J]. Icarus, 1998, 135: 107-126. doi: 10.1006/icar.1998.5980
    [2] Colarusso P, Kidder L H, Levein I W, et al. Infrared spectroscopic imaging: From planetary to cellular systems[J]. Applied Spectroscopy, 1998, 52: 106-120. doi: 10.1366/0003702981942401
    [3] Levenson R M, Mansfield J R. Multispectral imaging in biology and medicine: Slices of life[J]. Cytom A, 2006, 69: 748-758.
    [4] Zhang L, Small G W. Automated detection of chemical vapors by pattern recognition analysis of passive multispectral infrared remote sensing imaging data[J]. Applied Spectroscopy, 2002, 56: 1082-1093. doi: 10.1366/000370202321274908
    [5] Hiraoka Y, Shimi T, Haraguchi T. Multispectral imaging fluorescence microscopy for living cells[J]. Cell Structure and Function, 2002, 27: 367-374. doi: 10.1247/csf.27.367
    [6] Shi T, DiMarzio C A. Multispectral method for skin imaging: development and validation[J]. Applied Optics, 2007, 46: 8619-8626.
    [7] Romier J, Selves J, Gastellu-Etchegorry J. Imaging spectrometer based on an acousto-optic tunable filter[J]. Rev Sci Instrum, 1998, 69: 2859-2867. doi: 10.1063/1.1149025
    [8] Shingu H, Homma K, Kurosaki H, et al. Field observation of surface conditions using LCTF spectro-polarimeter[C]// Proc of SPIE. 2003, 5017: 116-127.
    [9] Blais-Ouellette S, Daigle O, Taylor K. The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging[C]//Proc of SPIE. 2006: 62695H.
    [10] Verhaegen M, Lessard S, Blais-Ouellette S. Narrow band SWIR hyperspectral imaging: a new approach based on volume Bragg grating[C]//Proc of SPIE. 2012: 83740G.
    [11] Kogelnik H. Coupled wave theory for thick hologram gratings[J]. Bell Syst Tech J, 1969, 48: 2909-2945. doi: 10.1002/j.1538-7305.1969.tb01198.x
    [12] 段佳著, 赵祥杰, 张大勇. 基于透射式体全息光栅的光学相控阵放大级研究[J]. 光学学报, 2014, 34: 0405002.

    Duan Jiazhu, Zhao Xiangjie, Zhang Dayong. Design of optical phased arrays amplifier stage based on volume holographic grating. Acta Optica Sinica, 2014, 34: 0405002
    [13] Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 1981, 71(7): 811-818. doi: 10.1364/JOSA.71.000811
    [14] Moharam M G, Gaylord T K, Magnusson R. Criteria for Bragg regime diffraction by phased gratings[J]. Optics Communication, 1980, 32(1): 14-18.
    [15] Laskin A, Laskin V. π Shaper-refractive beam shaping optics for advanced laser technologies[J]. Journal of Physics: Conference Series, 2011, 276: 012171.
  • 加载中
图(9)
计量
  • 文章访问数:  1214
  • HTML全文浏览量:  355
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-19
  • 修回日期:  2018-03-19
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回