留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于地基望远镜的高分辨率倾斜镜设计

孙鹏飞 陈俊杰 张勇 李保庆 褚家如

孙鹏飞, 陈俊杰, 张勇, 等. 用于地基望远镜的高分辨率倾斜镜设计[J]. 强激光与粒子束, 2018, 30: 074102. doi: 10.11884/HPLPB201830.180026
引用本文: 孙鹏飞, 陈俊杰, 张勇, 等. 用于地基望远镜的高分辨率倾斜镜设计[J]. 强激光与粒子束, 2018, 30: 074102. doi: 10.11884/HPLPB201830.180026
Sun Pengfei, Chen Junjie, Zhang Yong, et al. Design of high resolution tip/tilt mirror for multi-mirror ground-based telescope[J]. High Power Laser and Particle Beams, 2018, 30: 074102. doi: 10.11884/HPLPB201830.180026
Citation: Sun Pengfei, Chen Junjie, Zhang Yong, et al. Design of high resolution tip/tilt mirror for multi-mirror ground-based telescope[J]. High Power Laser and Particle Beams, 2018, 30: 074102. doi: 10.11884/HPLPB201830.180026

用于地基望远镜的高分辨率倾斜镜设计

doi: 10.11884/HPLPB201830.180026
基金项目: 

国家自然科学基金项目 51675505

国家自然科学基金项目 11473050

详细信息
    作者简介:

    孙鹏飞(1990-), 男,硕士研究生,从事压电倾斜镜研究;pengfeis0213@163.com

    通讯作者:

    李保庆(1978-), 男,博士,从事自适应光学、微流控芯片和生物医疗仪器等研究;bqli@ustc.edu.cn

  • 中图分类号: TH703

Design of high resolution tip/tilt mirror for multi-mirror ground-based telescope

  • 摘要: 根据多镜面地基望远镜在近红外实现共相衍射极限成像的需求,提出了一种基于压电堆栈致动器的高分辨率倾斜镜设计方案。该方案以哑铃型柔性铰链和菱形位移缩小结构(RADS)作为倾斜镜的运动传递元件,压电堆栈致动器(PSA)作为动力元件,并使用电涡流传感器作为角度测量部件。介绍了高分辨倾斜镜的工作原理,并对哑铃型柔性铰链和菱形位移缩小结构进行设计。柔性铰链和位移缩小结构的关键结构参数均采用理论计算、实验和仿真进行优化。建立倾斜镜模型,利用理论计算和有限元仿真软件分别计算倾斜镜的倾斜角度和分辨率。实验结果表明:设计的倾斜镜角度分辨率达到0.017″,最大倾斜角度为14.6″,谐振频率为136.97 Hz,与有限元仿真结果相吻合,满足地基望远镜系统衍射极限成像的要求。
  • 图  1  倾斜镜示意图和实验装置图

    Figure  1.  Schematic illustration and photo of the experimental setup of tip/tilt mirror(TM)

    图  2  哑铃型柔性铰链原型图和模型

    Figure  2.  Prototype and model of the flexible hinge

    图  3  柔性铰链的有限元模型和转动刚度结果

    Figure  3.  FEA model of the flexible hinge and the results of rotation stiffness

    图  4  菱形位移缩小结构的示意图和结果

    Figure  4.  Schematic illustration and attenuation ratio of rhombus attenuated displacement structure

    图  5  三点支撑式结构运动解耦

    Figure  5.  Motion decoupling of three-point support structure

    图  6  倾斜镜系统结果

    Figure  6.  Results of the tip/tilt mirror system

    图  7  倾斜镜分辨率

    Figure  7.  Angular solution of the tip/tilt mirror

  • [1] 张勇, 张靓, 刘根荣, 等. 基于色散条纹传感器的拼接镜面共相的实验研究[J]. 光学学报, 2011: 0212004. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201102015.htm

    Zhang Yong, Zhang Liang, Liu Genrong, et al. Experimental study of segment mirrors co-phase using dispersed fringe sensor. Acta Optica Sinica, 2011: 0212004 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201102015.htm
    [2] Peter W, Terry M, Jerry N, et al. The optical quality of the W. M. Keck telescope[C]//Proc of SPIE. 1994, 2199: 94-104.
    [3] Cho M, Corredor A, Dribusch C, et al. Design and development of a fast steering secondary mirror for the giant Magellan telescope[C]//Proc of SPIE. 2011: 812505.
    [4] Park W H, Corredor A, Cho M, et al. Flexure design development for a fast steering mirror[C]//Proc of SPIE. 2013: 88360W.
    [5] Janssen H, Teuwen M, Navarro R, et al. Design and prototype performance of an innovative cryogenic tip-tilt mirror[C]//Proc of SPIE. 2010: 77394A.
    [6] Tang T, Huang Yongmei, Fu Chengyu, et al. Acceleration feedback of a CCD-based tracking loop for the steering mirror[J]. Opt Eng, 2009, 48: 013001. doi: 10.1117/1.3065500
    [7] Kluk D J, Boulet M T, Trumper D L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator[J]. Mechatronics, 2012, 22 (3) : 257-270. doi: 10.1016/j.mechatronics.2012.01.008
    [8] Loney G C. Design of a small-aperture steering mirror for high bandwidth acquisition and tracking[J]. Opt Eng, 1990, 29 (11): 1360-1365. doi: 10.1117/12.55738
    [9] Higgs C. Overview of the ABL-Firepond active-tracking and compensation facility[C]/Proc of SPIE. 1998, 3381: 14-18.
    [10] Ling M X, Cao J Y, Jiang Z, et al. Theoretical modeling of attenuated displacement amplification for multistage compliant mechanism and its application[J]. Sensors and Actuators A: Physical, 2016, 249: 15-22. doi: 10.1016/j.sna.2016.08.011
    [11] Cao Y, Chen X B. A survey of modeling and control issues for piezoelectric actuators[J]. The American Society of Mechanical Engineers, 2015: 014001.
    [12] Loney G C. Design of a high-bandwidth steering mirror for space-based optical communications[C]//Proc of SPIE. 1991, 1543: 225-235.
    [13] Kluk D J. An advanced fast steering mirror for optical communication[D]. Cambridge: Massachusetts Institute of Technology, 2007.
    [14] Cho M, Corredor M, Dribusch C, et al. Development of the fast steering secondary mirror for the giant Magellan telescope[C]//Proc of SPIE. 2011: 8836V.
    [15] Yuan G, Wang D H, Li S D. Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angle[J]. Sensors and Actuators A: Physical, 2015, 235: 292-299. doi: 10.1016/j.sna.2015.10.017
    [16] 贾巍, 范承玉, 王海涛. 一种快速倾斜镜系统的设计与应用[J]. 强激光与粒子束, 2015, 27: 051003. doi: 10.11884/HPLPB201527.051003

    Jia Wei, Fan Chengyu, Wang Haitao. Design and application of fast steering mirror system. High Power Laser and Particle Beams, 2015, 27: 051003 doi: 10.11884/HPLPB201527.051003
    [17] 周子云, 高云国, 邵帅, 等. 采用柔性铰链的快速反射镜设计[J]. 光学精密工程, 2014, 22: 1547-1554. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201406020.htm

    Zhou Ziyun, Gao Yunguo, Shao Shuai, et al. Design of fast steering mirror using flexible hinge. Optics and Precision Engineering, 2014, 22: 1547-1554 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201406020.htm
    [18] 徐新行, 高云国, 杨洪波, 等. 车载大口径刚性支撑式快速反射镜[J]. 光学精密工程, 2014, 22: 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201401018.htm

    Xu Xinhang, Gao Yunguo, Yang Hongbo, et al. Large-diameter fast steering mirror on rigid support technology for dynamic platform. Optics and Precision Engineering, 2014, 22: 117-124 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201401018.htm
    [19] 徐新行, 韩旭东, 王兵, 等. 机载刚性支撑式快速控制反射镜设计[J]. 光学精密工程, 2016, 24: 126-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201601017.htm

    Xu Xinhang, Han Xudong, Wang Bing, et al. Design of fast steering mirror with rigid support structure for airborne platform. Optics and Precision Engineering, 2016, 24: 126-133 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201601017.htm
    [20] Wang H B, Feng Z H. Ultrastable and highly sensitive eddy current displacement sensor using self-temperature compensation[J]. Sensors and Actuators A: Physical, 2013, 203: 362-368. doi: 10.1016/j.sna.2013.09.016
    [21] Wang H B, Ju B, Li W, et al. Ultrastable eddy current displacement sensor working in harsh temperature environments with comprehensive self-temperature compensation[J]. Sensors and Actuators A: Physical, 2014, 211: 98-104.
    [22] Kuan Y K, Lu T F, Handley D C. Review of circular flexible hinge design equations and derivation of empirical formulations[J]. Precision Engineering, 2008, 32: 63-70.
  • 加载中
图(7)
计量
  • 文章访问数:  928
  • HTML全文浏览量:  222
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-03-09
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回