Design of high resolution tip/tilt mirror for multi-mirror ground-based telescope
-
摘要: 根据多镜面地基望远镜在近红外实现共相衍射极限成像的需求,提出了一种基于压电堆栈致动器的高分辨率倾斜镜设计方案。该方案以哑铃型柔性铰链和菱形位移缩小结构(RADS)作为倾斜镜的运动传递元件,压电堆栈致动器(PSA)作为动力元件,并使用电涡流传感器作为角度测量部件。介绍了高分辨倾斜镜的工作原理,并对哑铃型柔性铰链和菱形位移缩小结构进行设计。柔性铰链和位移缩小结构的关键结构参数均采用理论计算、实验和仿真进行优化。建立倾斜镜模型,利用理论计算和有限元仿真软件分别计算倾斜镜的倾斜角度和分辨率。实验结果表明:设计的倾斜镜角度分辨率达到0.017″,最大倾斜角度为14.6″,谐振频率为136.97 Hz,与有限元仿真结果相吻合,满足地基望远镜系统衍射极限成像的要求。Abstract: To meet the requirements of co-phase diffraction limit imaging, a high resolution tip/tilt mirror(TM) for multi-mirror ground-based telescope is proposed and designed. Three dumbbell-shaped flexible hinges and rhombus attenuated displacement structures (RADSs) were used in the TM system as the moving transmission devices, and three piezoelectric stack actuators (PSAs) were applied as driving components. The structure parameters of the flexible hinges and RADSs were optimized by theoretical, experimental and simulative methods. The experimental results show that the TM has an extreme high angular resolution of 0.017″, and the mechanical excursion angle is larger than 0.24′ with a natural frequency of 136.97 Hz, which accord well with the results of the theoretical estimation and finite element analyzing (FEA) simulation. The high angular resolution property indicates the multi-mirror telescope can achieve the imaging in diffraction limit.
-
Blumlein线是一种典型的脉冲形成装置,被广泛应用于强流直线感应电子加速器[1-3]等大型脉冲功率装置中。Blumlein线主放电开关起着连接形成线与负载的作用。电场畸变气体火花开关作为一种主放电开关的重要应用形式常被应用于Blumlein脉冲形成装置中,其优点主要有导通强电流、大电荷量转移、结构简单以及使用方便等。
研究者们主要开展了场畸变气体开关触发系统、长寿命电极材料以及开关电极结构等方面的研究,取得了一些有意义的研究成果[4-8]。对于稳定性和可靠性要求很高的大型脉冲功率装置,如强流直线感应加速器中的Blumlein主放电开关,它除了包含一般场畸变开关的所有部组件外,还包括隔离Blumlein线水介质与主放电开关气室的绝缘子。在装置长时间多发次运行后,绝缘子气体侧会发生沿面闪络现象,沿面闪络的发生严重影响主放电开关的稳定性和可靠性[9-12]。
通过仿真计算来优化绝缘结构达到电场调控的方法已被广泛应用于电气设备与脉冲功率装置中[13-15]。本文应用电场仿真计算方法,在有限边界条件下(仅可局部更换部件)对Blumlein线主放电开关的绝缘结构进行了优化设计,通过对阳极异型螺母和绝缘子的外形结构的优化设计,控制局部区域的电场强度,使得电场沿绝缘子表面的分布均匀化、合理化。开展了在标准雷电波条件下混合气体中的不同构形绝缘子的沿面闪络特性,优化后的绝缘子沿面闪络电压得到了明显的提升。
1. 绝缘结构优化
1.1 问题分析与仿真模型
当Blumlein主放电开关中的绝缘子发生闪络时,就必须停止直线感应加速器的运行进行检修,处理方法为重新抛光绝缘子的表面或更换新的绝缘子。开关中的绝缘子发生闪络的痕迹如图1所示。经过对绝缘子沿面闪络放电路径的分析,对实际使用中可更换的部件进行实体建模,Blumlein线主放电开关气室的二维模型如图2所示。模型主要由阳极(异型螺母)、阴极(法兰)和绝缘子组成。通过优化异型螺母和绝缘子的外形结构来实现绝缘子表面电场分布、阳极三结合点(ATJ)和阴极三结合点(CTJ)处场强的控制,达到提升沿面闪络电压的目的。计算模型中主要的物理参数有:有机玻璃绝缘子的相对介电常数为2.8,体积电阻率为1.0×1014 Ω · cm,阳极异型螺母加载电压300 kV,阴极(法兰)接地。
1.2 仿真计算结果
仿真计算了三种绝缘结构的电场分布,如图3所示。第一种为原始结构,由两个等径伞组成,爬电距离为246 mm,如图3(a)所示;第二种为单伞形结构,在异型螺母不变的情况下,绝缘子的伞形由原来的等径双伞形改为单伞形,爬电距离为200 mm,如图3(b)所示;最后一种为优化结构,即同时优化了异型螺母的尺寸和伞形结构,爬电距离为251 mm,如图3(c)所示。阳极施加300 kV负高压,阴极法兰接地。从计算结果中获取不同构形绝缘子的沿面电场分布,如图4所示。从图中可以看出,单伞结构的表面电场低于原始结构,但是电场沿绝缘子表面的分布变化不大。优化结构的绝缘子表面电场低于原始结构,且电场沿绝缘子分布得到了明显的改善。
表1对比了不同构形绝缘子表面最大场强、阳极三结合点处场强和阴极三结合点处的场强,结果表明优化结构的绝缘子在以上三处的场强都得到了大幅的降低,分别从原来的10.8 kV/mm降至5.28 kV/mm、9.44 kV/mm降至1.42 kV/mm和3.12 kV/mm降至0.92 kV/mm。
表 1 不同构形绝缘子表面电场强度的典型数值Table 1. Electric field strength along insulator surfaceinsulator Emax/(kV·mm−1) EATJ/(kV·mm−1) ECTJ/(kV·mm−1) origin insulator 10.8 9.44 3.12 single umbrella insulator 11.5 11.5 2.88 optimized insulator 5.28 1.42 0.92 2. 实验研究与讨论
由于强流直线感应加速器的脉冲功率系统的最高输出为300 kV的脉冲电压,单次脉冲下沿面闪络电压不易发生,因此,为了研究绝缘结构对闪络电压的影响,本项目开展了在标准雷电波1.2 μs/50 μs脉冲条件下不同构形绝缘子的沿面闪络电压试验。试验采用负极性标准雷电波,试验方法为逐级升压法,以预估击穿电压Ub的60%作为升压的起始电压,每级电压至少进行3次加压,加压后若没有发生闪络,则每次以30 kV为步长,逐级加压。每次升压间隔1 min。首次闪络发生后,继续进行3次加压,如未发生闪络,则认为首次闪络电压为老练电压,继续升压,如发生闪络,则降低5%电压重复以上过程。直至加压后持续发生闪络至少3次,取该电压作为绝缘子的闪络电压。闪络试验的工装设计示意图和实物图如图5所示,试验工装主要由试验套管、六氟化硫气室、绝缘子和变压器油室组成。其中试验套管外绝缘可以耐受1000 kV标准雷电波冲击电压,气室充0.55 MPa的SF6和N2的混合气,二者混合比为1∶4(与实际运行工况相同),绝缘子及法兰尺寸与直线感应加速器中的Blumlein线主开关一致。采用变压器油(Blumlein线中为水介质)对绝缘子背面进行沿面绝缘保护,以确保获得在雷电波冲击电压下绝缘子的沿面闪络发生在气体侧的有效数据。
每种构形的绝缘子试品数量为5件,样品如图6所示,分别进行了雷电冲击波条件下的闪络试验,闪络时延发生在雷电波的波尾,主要分布于4~5 μs之间,试验结果如图7所示,原始结构绝缘子、单伞结构绝缘子和优化结构绝缘子的最低闪络电压分别为540,588和734 kV,最高闪络电压均分别为656,668和900 kV,优化结构绝缘子的最低和最高沿面闪络电压相比原始结构分别提升了约35.9%和37.2%,并且优化结构绝缘子的最低闪络电压要高于原始结构绝缘子和单伞结构绝缘子的最高沿面闪络电压。
3. 结 论
在Blumlein主放电开关中不规则绝缘结构设计时,爬电距离不是主要设计参数,电场的均匀性、阳极三结合点和阴极三结合点的场强控制更为重要。如电极与绝缘介质直接接触(原始结构与单伞结构),由于两种材料的介电常数差异巨大会造成分界面上电场的增强,尤其是电极-绝缘介质-气体三结合点处电场的增强,从而导致沿面闪络电压的降低。本文通过电场仿真计算与分析,采用电极的布置方式与绝缘子的构形相互配合来实现优化设计。首先,对三结合点处的场强进行控制;其次,减少电极与绝缘子表面的接触面积;最后,将电极与绝缘子伞裙保持一定的距离。优化后的绝缘子的最低和最高沿面闪络电压相比原始结构分别提升了约35.9%和37.2%,从而大大提升了直线感应加速器的稳定性与可靠性。
-
-
[1] 张勇, 张靓, 刘根荣, 等. 基于色散条纹传感器的拼接镜面共相的实验研究[J]. 光学学报, 2011: 0212004. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201102015.htmZhang Yong, Zhang Liang, Liu Genrong, et al. Experimental study of segment mirrors co-phase using dispersed fringe sensor. Acta Optica Sinica, 2011: 0212004 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201102015.htm [2] Peter W, Terry M, Jerry N, et al. The optical quality of the W. M. Keck telescope[C]//Proc of SPIE. 1994, 2199: 94-104. [3] Cho M, Corredor A, Dribusch C, et al. Design and development of a fast steering secondary mirror for the giant Magellan telescope[C]//Proc of SPIE. 2011: 812505. [4] Park W H, Corredor A, Cho M, et al. Flexure design development for a fast steering mirror[C]//Proc of SPIE. 2013: 88360W. [5] Janssen H, Teuwen M, Navarro R, et al. Design and prototype performance of an innovative cryogenic tip-tilt mirror[C]//Proc of SPIE. 2010: 77394A. [6] Tang T, Huang Yongmei, Fu Chengyu, et al. Acceleration feedback of a CCD-based tracking loop for the steering mirror[J]. Opt Eng, 2009, 48: 013001. doi: 10.1117/1.3065500 [7] Kluk D J, Boulet M T, Trumper D L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator[J]. Mechatronics, 2012, 22 (3) : 257-270. doi: 10.1016/j.mechatronics.2012.01.008 [8] Loney G C. Design of a small-aperture steering mirror for high bandwidth acquisition and tracking[J]. Opt Eng, 1990, 29 (11): 1360-1365. doi: 10.1117/12.55738 [9] Higgs C. Overview of the ABL-Firepond active-tracking and compensation facility[C]/Proc of SPIE. 1998, 3381: 14-18. [10] Ling M X, Cao J Y, Jiang Z, et al. Theoretical modeling of attenuated displacement amplification for multistage compliant mechanism and its application[J]. Sensors and Actuators A: Physical, 2016, 249: 15-22. doi: 10.1016/j.sna.2016.08.011 [11] Cao Y, Chen X B. A survey of modeling and control issues for piezoelectric actuators[J]. The American Society of Mechanical Engineers, 2015: 014001. [12] Loney G C. Design of a high-bandwidth steering mirror for space-based optical communications[C]//Proc of SPIE. 1991, 1543: 225-235. [13] Kluk D J. An advanced fast steering mirror for optical communication[D]. Cambridge: Massachusetts Institute of Technology, 2007. [14] Cho M, Corredor M, Dribusch C, et al. Development of the fast steering secondary mirror for the giant Magellan telescope[C]//Proc of SPIE. 2011: 8836V. [15] Yuan G, Wang D H, Li S D. Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angle[J]. Sensors and Actuators A: Physical, 2015, 235: 292-299. doi: 10.1016/j.sna.2015.10.017 [16] 贾巍, 范承玉, 王海涛. 一种快速倾斜镜系统的设计与应用[J]. 强激光与粒子束, 2015, 27: 051003. doi: 10.11884/HPLPB201527.051003Jia Wei, Fan Chengyu, Wang Haitao. Design and application of fast steering mirror system. High Power Laser and Particle Beams, 2015, 27: 051003 doi: 10.11884/HPLPB201527.051003 [17] 周子云, 高云国, 邵帅, 等. 采用柔性铰链的快速反射镜设计[J]. 光学精密工程, 2014, 22: 1547-1554. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201406020.htmZhou Ziyun, Gao Yunguo, Shao Shuai, et al. Design of fast steering mirror using flexible hinge. Optics and Precision Engineering, 2014, 22: 1547-1554 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201406020.htm [18] 徐新行, 高云国, 杨洪波, 等. 车载大口径刚性支撑式快速反射镜[J]. 光学精密工程, 2014, 22: 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201401018.htmXu Xinhang, Gao Yunguo, Yang Hongbo, et al. Large-diameter fast steering mirror on rigid support technology for dynamic platform. Optics and Precision Engineering, 2014, 22: 117-124 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201401018.htm [19] 徐新行, 韩旭东, 王兵, 等. 机载刚性支撑式快速控制反射镜设计[J]. 光学精密工程, 2016, 24: 126-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201601017.htmXu Xinhang, Han Xudong, Wang Bing, et al. Design of fast steering mirror with rigid support structure for airborne platform. Optics and Precision Engineering, 2016, 24: 126-133 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201601017.htm [20] Wang H B, Feng Z H. Ultrastable and highly sensitive eddy current displacement sensor using self-temperature compensation[J]. Sensors and Actuators A: Physical, 2013, 203: 362-368. doi: 10.1016/j.sna.2013.09.016 [21] Wang H B, Ju B, Li W, et al. Ultrastable eddy current displacement sensor working in harsh temperature environments with comprehensive self-temperature compensation[J]. Sensors and Actuators A: Physical, 2014, 211: 98-104. [22] Kuan Y K, Lu T F, Handley D C. Review of circular flexible hinge design equations and derivation of empirical formulations[J]. Precision Engineering, 2008, 32: 63-70. 期刊类型引用(3)
1. 李智宇,李昊,曹鹤飞,金梦哲,胡曼. 基于D-dot传感器的弓网离线放电瞬态电场时域测试方法. 强激光与粒子束. 2022(12): 70-79 . 本站查看
2. 周澄,许胜,曹健,付焕森. 数字信号处理技术的激光传感器测量误差校准系统. 激光杂志. 2022(11): 41-46 . 百度学术
3. 樊欣,李婷峰,王永涛. 基于光传感器测量偏差的实时在线校正方法. 激光杂志. 2020(09): 15-19 . 百度学术
其他类型引用(1)
-