Miniaturized cavity filter based on TM010 mode dielectric resonators
-
摘要: 现用于4G基站的介质腔体滤波器都采用TE01δ模介质谐振腔,虽然其品质因数Q值很高,但体积较大。为了小型化介质腔体滤波器,创新性地使用了TM010模介质谐振腔,虽然其Q值比较低,但同样能满足高带外抑制的要求。对TM010模介质谐振腔的端口耦合和两腔之间的磁耦合、电耦合进行分析研究,创新性地使用了介质窗的形式产生电耦合,避免了使用飞杆,易于加工,降低制造成本。最后设计了一个8腔TM010模准椭圆函数介质腔体带通滤波器,在通带(TD-LTE频带,2570~2620 MHz)两端分别设计两个传输零点以提高带外抑制。调试结果表明,TM010模介质腔体滤波器不仅能满足低插损、高带外抑制的要求,而且其体积大幅度缩小。Abstract: The dielectric cavity filter used for 4G base station usually adopts TE01δ mode dielectric resonators. Its quality factor Q value is very high, but its size is relatively large. In order to miniaturize the dielectric cavity filter, TM010 mode dielectric resonator is innovatively used. Although its Q value is relatively low, it can also meet the requirements of high band rejections. In this paper, the port coupling, magnetic coupling and electric coupling between two resonators are analyzed. Dielectric openings are innovatively used to create electric couplings, which are easy to machine and reduce manufacturing costs. Besides, an 8-pole quasi-elliptic function filter with two pairs of transmission zeros that can improve the close-to-band rejection slopes is designed and its passband is 2570 MHz to 2620 MHz, TD-LTE band. The debugging results show that the TM010 mode dielectric cavity filter can not only meet the requirements of low insertion loss and high band rejections, but also reduce its size greatly.
-
表 1 4G基站介质腔体滤波器的主要技术指标要求
Table 1. Technical specification of the 4G base station dielectric cavity filter
technical specification working frequency/MHz return loss/dB insertion loss/dB out-of-band suppression/dB power capacity/W expected value 2570~2620(±0.5) ≤ -10 ≥ -1 ≤ -40 @ 2500~2565 MHz ≤ -40 @ 2625~2695 MHz ≤ -60B @ 1880~1920 MHz ≥ 100 表 2 端口的外部品质因数Qe
Table 2. Loaded quality factor of the port
d/mm Qed Qer 7.00 56.90 57.51 7.10 55.07 55.80 7.16 53.76 54.50 7.20 52.99 53.74 7.30 52.11 51.83 表 3 谐振腔之间的开窗宽度以及调谐螺钉的长度(单位: mm)
Table 3. The width of the openings between resonators and the length of the tuning screws (unit: mm)
d01 l12 l13 s14 l23 l34 l45 l56 s58 l67 l68 l78 d8L 9.51 17.74 3.63 15.16 17.57 13.73 15.12 14.43 18.66 16.84 2.53 18.1 9.64 screw_l1 screw_l2 screw_l3 screw_l4 screw_l5 screw_l6 screw_l7 screw_l8 7.678 6.347 6.721 7.053 6.938 6.73 6.315 7.559 表 4 4G基站介质腔体滤波器的仿真指标
Table 4. Simulation results of the 4G base station dielectric cavity filter
technical specification working frequency/MHz return loss/dB insertion loss/dB out-of-band suppression/dB power capacity/W 3D simulation results 2570~2620(±0.5) ≤-10 ≥-1 ≤-50 @ 2500~2565 MHz ≤-48 @ 2625~2695 MHz ≤-60 @ 1880~1920 MHz ≥ 1000 -
[1] Harrison W H. A miniature high-Q bandpass filter employing dielectric resonators[J]. IEEE Trans Microwave Theory and Techniques, 1968, 16(4): 210-218. doi: 10.1109/TMTT.1968.1126653 [2] Cohn S B. Microwave bandpass filters containing high-Q dielectric resonators[J]. IEEE Trans Microwave Theory and Techniques, 1968, 16(4): 218-227. doi: 10.1109/TMTT.1968.1126654 [3] Pospieszalski M W. Cylindrical dielectric resonators and their applications in TEM-line microwave circuits[C]//European Microwave Conference. 1977: 168-172. [4] Chen C J. A four-pole parallel-coupled dual-mode resonator bandpass filter[C]//IEEE MTT-S International Microwave Symposium. 2016: 1-3. [5] Doan M T, Che Wenquan, Phu L N. A novel wideband bandpass filter using open stubs multi-mode square ring resonator[C]//International Conference on Advanced Technologies for Communications. 2012: 180-182. [6] Zheng Binglong, Wong Saiwai, Feng Shifen, et al. Multi-mode bandpass cavity filters and duplexer with slot mixed-coupling structure[J]. IEEE Access, 2018, 6(1): 16353-16362. [7] Cameron R J. General coupling matrix synthesis methods for Chebyshev filtering functions[J]. IEEE Trans Microwave Theory and Techniques, 1999, 47(4): 433-442. doi: 10.1109/22.754877 [8] Lin Fumin, Ding Yaogen. Approximate formula of the loaded quality factor of doubly reentrant cylindrical cavity coupling with coaxial line[C]//ICMMT 4th International Conference on Microwave and Millimeter Wave Technology. 2004: 491-494. [9] 林福民, 王志勇, 黄焕辉. 反射系数相位法计算谐振腔外观品质因数的局限性[J]. 强激光与粒子束, 2005, 17(9): 1399-1404. http://www.hplpb.com.cn/article/id/1196Lin Fumin, Wang Zhiyong, Huang Huanhui. Limitation of Qext calculation method based on reflectance phase. High Power Laser and Particle Beams, 2005, 17(9): 1399-1404 http://www.hplpb.com.cn/article/id/1196 [10] Otto S, Lauer A, Kassner J, et al. Full wave coupled resonator filter optimization using a multi-port admittance-matrix[C]//Asia-Pacific Microwave Conference. 2006: 777-778. [11] Yin Xinshe. Accurate extraction of coupling matrix for coupled resonator filters[C]//IEEE/MTT-S International Microwave Symposium Digest. 2012: 1-3.