Design and application of flexible shielding material based reverberation chamber
-
摘要: 利用柔性屏蔽材料不平整性使屏蔽腔内场环境易于满足各向同性、均匀分布、随机极化统计特征的特点,研究了三种不同柔性屏蔽材料搭建的模式搅拌混响室的可行性。在Z字形搅拌器的作用下通过测量得到低频场均匀性和高频归一化电场的概率密度函数,根据IEC 61000-4-21-2011标准和理想混响室模型验证了所搭建混响室的有效性。在此基础之上,通过实验测量分析了搅拌器转速、天线高度、天线位置对归一化电场概率密度函数(PDF)的影响,并利用所搭建混响室对加载开孔电大金属腔的电磁屏蔽效能进行了测试。研究结果表明利用柔性屏蔽材料搭建混响室具有较好的可行性。Abstract: The feasibility of mode stirred reverberation chambers(MSRCs) constructed by using flexible shielding materials is investigated, whose uneven walls enable them easily meet the requirements of the statistic characteristics of isotropic, uniform distribution and random polarization. The field uniformity and the probability density function(PDF) of normalized electric field are measured, and the results are in accordance with the standard IEC 61000-4-21-2011 and the PDF of ideal MSRC model. Then the influence of the stirrer rotation speed, antenna height and position on PDF of normalized electric field is analyzed experimentally. Finally, the flexible shielding material based reverberation chamber is used to measure the shielding effectiveness(SE) of an electrically large cavity with and without water load, demonstrating a good feasibility.
-
表 1 不同频率下混响室内的模式数
Table 1. Number of modes in RC at different frequency
f/MHz N 250 67 290 108 400 291 500 576 600 1002 1000 4685 1500 15859 -
[1] IEC 61000-4-21, Electromagnetic compatibility (EMC), part 4-21: Testing and measurement techniques: Reverberation chamber test methods[S]. 2003 [2] HillD A. Further applications of reverberation chambers, electromagnetic fields in cavities: Deterministic and statistical theories[M]. New Jersey: John Wiley and Sons, 2009: 181-201. [3] Leferink F, Boudenot J C, Etten W. Experimental results obtained in the vibrating intrinsic reverberation chamber[C]//IEEE International Symposium on Electromagnetic Compatibility. 2000, 2: 639-644. [4] Serra R, Rodriguez A. Vibrating intrinsic reverberation chamber for electromagnetic compatibility measurements[J]. IEEE Latin America Transactions, 2013, 11(1): 389-395. doi: 10.1109/TLA.2013.6502835 [5] Schipper H, Leferink F. Shielding effectiveness measurements of materials and enclosures using a dual vibrating intrinsic reverberation chamber[C]//IEEE International Symposium on Electromagnetic Compatibility. 2015: 23-28. [6] 袁智勇, 李暾, 陈水明, 等. 混响室设计与校准测试[J]. 电波科学学报, 2007, 22(4): 571-576. doi: 10.3969/j.issn.1005-0388.2007.04.007Yuan Zhiyong, Li Tun, Chen Shuiming, et al. Design and calibration of reverberation chamber. Chinese Journal of Radio Science, 2007, 22(4): 571-576 doi: 10.3969/j.issn.1005-0388.2007.04.007 [7] MIL-STD-461F, Requirements for the control of electromagnetic interference characteristics of subsystems and equipment[S]. 2007. [8] Barakos D, Serra R. Performance characterization of the oscillating wall stirrer[C]//International Symposium on Electromagnetic Compatibility. 2017: 1-4. [9] Bruns C, Vahldieck R. A closer look at reverberation chambers—3-D simulation and experimental verification[J]. IEEE Trans Electromagnetic Compatibility, 2005, 47(3): 612-626. doi: 10.1109/TEMC.2005.850677 [10] Hill D A. Probability density function of power received in a reverberation chamber[J]. IEEE Trans Electromagnetic Compatibility, 2008, 50(4): 1019-1019. doi: 10.1109/TEMC.2008.2004807 [11] 张华彬, 赵翔, 周海京, 等. 混响室的概率统计分析方法及其蒙特卡罗模拟[J]. 强激光与粒子束, 2011, 23(9): 2475-2480. http://www.hplpb.com.cn/article/id/5098Zhang Huabin, Zhao Xiang, Zhou Haijing, et al. Probabilistic and statistical analysis of mode stirred reverberation chamber and its Monte Carlo simulation. High Power Laser and Particle Beams, 2011, 23(9): 2475-2480 http://www.hplpb.com.cn/article/id/5098 [12] 程二威, 王庆国, 范丽思. 混响室环境下小屏蔽体屏蔽效能测试系统[J]. 河北大学学报(自然科学版), 2010, 30(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDD201002018.htmCheng Erwei, Wang Qingguo, Fan Lisi. Shielding effectiveness testing system of small enclosures within reverberation chamber. Journal of Hebei University (Natural Science Edition), 2010, 30(2): 201-204 https://www.cnki.com.cn/Article/CJFDTOTAL-HBDD201002018.htm [13] Holloway C L, Hill D A, Ladbury J, et al. Shielding effectiveness measurements of materials using nested reverberation chambers[J]. IEEE Trans Electromagnetic Compatibility, 2003, 45(2): 350-356. doi: 10.1109/TEMC.2003.809117 [14] 曲兆明, 王庆国, 程二威. 小屏蔽体屏蔽效能混响室测试的改进方法[J]. 军械工程学院学报, 2010(1): 31-34.Qu Zhaoming, Wang Qingguo, Cheng Erwei. Improved method on shielding effectiveness test of small dimension enclosures using reverberation chamber. Journal of Ordnance Engineering College, 2010(1): 31-34 [15] IEEE 299-2006, Standard method for measuring the effectiveness of electromagnetic shielding enclosures[S]. 2006. [16] Flintoft I D, Bale S J, Marvin A C, et al. Representative contents design for shielding enclosure qualification from 2 to 20 GHz[J]. IEEE Trans Electromagnetic Compatibility, 2018, 60(1): 173-181. doi: 10.1109/TEMC.2017.2702595