留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柔性屏蔽材料混响室的设计与应用

苏政铭 刘强 赵远 闫丽萍 赵翔 周海京

苏政铭, 刘强, 赵远, 等. 基于柔性屏蔽材料混响室的设计与应用[J]. 强激光与粒子束, 2018, 30: 073202. doi: 10.11884/HPLPB201830.180048
引用本文: 苏政铭, 刘强, 赵远, 等. 基于柔性屏蔽材料混响室的设计与应用[J]. 强激光与粒子束, 2018, 30: 073202. doi: 10.11884/HPLPB201830.180048
Su Zhengming, Liu Qiang, Zhao Yuan, et al. Design and application of flexible shielding material based reverberation chamber[J]. High Power Laser and Particle Beams, 2018, 30: 073202. doi: 10.11884/HPLPB201830.180048
Citation: Su Zhengming, Liu Qiang, Zhao Yuan, et al. Design and application of flexible shielding material based reverberation chamber[J]. High Power Laser and Particle Beams, 2018, 30: 073202. doi: 10.11884/HPLPB201830.180048

基于柔性屏蔽材料混响室的设计与应用

doi: 10.11884/HPLPB201830.180048
基金项目: 

国家自然科学基金委员会-中国工程物理研究院联合基金项目 NSAF-U1530143

详细信息
    作者简介:

    苏政铭(1993-),男,硕士,从事电磁兼容研究;1192211674@qq.com

    通讯作者:

    闫丽萍(1972—),女,教授,主要从事电磁兼容建模分析、电磁效应评估方面的研究;liping_yan@scu.edu.cn

  • 中图分类号: TN97

Design and application of flexible shielding material based reverberation chamber

  • 摘要: 利用柔性屏蔽材料不平整性使屏蔽腔内场环境易于满足各向同性、均匀分布、随机极化统计特征的特点,研究了三种不同柔性屏蔽材料搭建的模式搅拌混响室的可行性。在Z字形搅拌器的作用下通过测量得到低频场均匀性和高频归一化电场的概率密度函数,根据IEC 61000-4-21-2011标准和理想混响室模型验证了所搭建混响室的有效性。在此基础之上,通过实验测量分析了搅拌器转速、天线高度、天线位置对归一化电场概率密度函数(PDF)的影响,并利用所搭建混响室对加载开孔电大金属腔的电磁屏蔽效能进行了测试。研究结果表明利用柔性屏蔽材料搭建混响室具有较好的可行性。
  • 图  1  混响室结构与测试系统

    Figure  1.  Reverberation chamber and experimental system

    图  2  三种柔性屏蔽材料搭建的模式搅拌混响室

    Figure  2.  Mode stirred reverberation chambers (MSRCs) made of three kinds of flexible shielding materials

    图  3  Z字形搅拌器及其在混响室中的放置位置

    Figure  3.  Z-shaped stirrer and its location in the MSRC

    图  4  均匀区电场标准偏差

    Figure  4.  Standard deviation of E-field

    图  5  2 GHz时三种柔性材料混响室在不同时间段内归一化电场的概率密度函数

    Figure  5.  PDF of normalized electric field at 2 GHz in different time periods for MSRC made of different flexible materials

    图  6  三种柔性材料混响室内归一化电场的概率密度函数(2~8 GHz)

    Figure  6.  PDF of normalized electric field for MSRC made of different flexible materials(f=2~8 GHz)

    图  7  不同因素对柔性铜网混响室归一化电场PDF的影响(2 GHz)

    Figure  7.  Effect of different factors on PDF of normalized electric field in MSRC made of flexible copper mesh (f=2 GHz)

    图  8  不同因素对柔性屏蔽布混响室归一化电场PDF的影响(2 GHz)

    Figure  8.  Effect of different factors on PDF of normalized electric field in MSRC made of flexible shielding cloth (f=2 GHz)

    图  9  不同因素对柔性铝箔混响室归一化电场PDF的影响(2 GHz)

    Figure  9.  Effect of different factors on PDF of normalized electric field in MSRC made of flexible aluminum foil (f=2 GHz)

    图  10  电大腔SE测试

    Figure  10.  SE measurement of electrically large cavity

    表  1  不同频率下混响室内的模式数

    Table  1.   Number of modes in RC at different frequency

    f/MHz N
    250 67
    290 108
    400 291
    500 576
    600 1002
    1000 4685
    1500 15859
    下载: 导出CSV
  • [1] IEC 61000-4-21, Electromagnetic compatibility (EMC), part 4-21: Testing and measurement techniques: Reverberation chamber test methods[S]. 2003
    [2] HillD A. Further applications of reverberation chambers, electromagnetic fields in cavities: Deterministic and statistical theories[M]. New Jersey: John Wiley and Sons, 2009: 181-201.
    [3] Leferink F, Boudenot J C, Etten W. Experimental results obtained in the vibrating intrinsic reverberation chamber[C]//IEEE International Symposium on Electromagnetic Compatibility. 2000, 2: 639-644.
    [4] Serra R, Rodriguez A. Vibrating intrinsic reverberation chamber for electromagnetic compatibility measurements[J]. IEEE Latin America Transactions, 2013, 11(1): 389-395. doi: 10.1109/TLA.2013.6502835
    [5] Schipper H, Leferink F. Shielding effectiveness measurements of materials and enclosures using a dual vibrating intrinsic reverberation chamber[C]//IEEE International Symposium on Electromagnetic Compatibility. 2015: 23-28.
    [6] 袁智勇, 李暾, 陈水明, 等. 混响室设计与校准测试[J]. 电波科学学报, 2007, 22(4): 571-576. doi: 10.3969/j.issn.1005-0388.2007.04.007

    Yuan Zhiyong, Li Tun, Chen Shuiming, et al. Design and calibration of reverberation chamber. Chinese Journal of Radio Science, 2007, 22(4): 571-576 doi: 10.3969/j.issn.1005-0388.2007.04.007
    [7] MIL-STD-461F, Requirements for the control of electromagnetic interference characteristics of subsystems and equipment[S]. 2007.
    [8] Barakos D, Serra R. Performance characterization of the oscillating wall stirrer[C]//International Symposium on Electromagnetic Compatibility. 2017: 1-4.
    [9] Bruns C, Vahldieck R. A closer look at reverberation chambers—3-D simulation and experimental verification[J]. IEEE Trans Electromagnetic Compatibility, 2005, 47(3): 612-626. doi: 10.1109/TEMC.2005.850677
    [10] Hill D A. Probability density function of power received in a reverberation chamber[J]. IEEE Trans Electromagnetic Compatibility, 2008, 50(4): 1019-1019. doi: 10.1109/TEMC.2008.2004807
    [11] 张华彬, 赵翔, 周海京, 等. 混响室的概率统计分析方法及其蒙特卡罗模拟[J]. 强激光与粒子束, 2011, 23(9): 2475-2480. http://www.hplpb.com.cn/article/id/5098

    Zhang Huabin, Zhao Xiang, Zhou Haijing, et al. Probabilistic and statistical analysis of mode stirred reverberation chamber and its Monte Carlo simulation. High Power Laser and Particle Beams, 2011, 23(9): 2475-2480 http://www.hplpb.com.cn/article/id/5098
    [12] 程二威, 王庆国, 范丽思. 混响室环境下小屏蔽体屏蔽效能测试系统[J]. 河北大学学报(自然科学版), 2010, 30(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDD201002018.htm

    Cheng Erwei, Wang Qingguo, Fan Lisi. Shielding effectiveness testing system of small enclosures within reverberation chamber. Journal of Hebei University (Natural Science Edition), 2010, 30(2): 201-204 https://www.cnki.com.cn/Article/CJFDTOTAL-HBDD201002018.htm
    [13] Holloway C L, Hill D A, Ladbury J, et al. Shielding effectiveness measurements of materials using nested reverberation chambers[J]. IEEE Trans Electromagnetic Compatibility, 2003, 45(2): 350-356. doi: 10.1109/TEMC.2003.809117
    [14] 曲兆明, 王庆国, 程二威. 小屏蔽体屏蔽效能混响室测试的改进方法[J]. 军械工程学院学报, 2010(1): 31-34.

    Qu Zhaoming, Wang Qingguo, Cheng Erwei. Improved method on shielding effectiveness test of small dimension enclosures using reverberation chamber. Journal of Ordnance Engineering College, 2010(1): 31-34
    [15] IEEE 299-2006, Standard method for measuring the effectiveness of electromagnetic shielding enclosures[S]. 2006.
    [16] Flintoft I D, Bale S J, Marvin A C, et al. Representative contents design for shielding enclosure qualification from 2 to 20 GHz[J]. IEEE Trans Electromagnetic Compatibility, 2018, 60(1): 173-181. doi: 10.1109/TEMC.2017.2702595
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1009
  • HTML全文浏览量:  274
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 修回日期:  2018-04-06
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回