留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒流电磁垂直输运装置物理设计

黄燃 何源 李智慧

黄燃, 何源, 李智慧. 颗粒流电磁垂直输运装置物理设计[J]. 强激光与粒子束, 2018, 30: 126001. doi: 10.11884/HPLPB201830.180059
引用本文: 黄燃, 何源, 李智慧. 颗粒流电磁垂直输运装置物理设计[J]. 强激光与粒子束, 2018, 30: 126001. doi: 10.11884/HPLPB201830.180059
Huang Ran, He Yuan, Li Zhihui. Physical design of a granular flow electromagnetic vertical transport device[J]. High Power Laser and Particle Beams, 2018, 30: 126001. doi: 10.11884/HPLPB201830.180059
Citation: Huang Ran, He Yuan, Li Zhihui. Physical design of a granular flow electromagnetic vertical transport device[J]. High Power Laser and Particle Beams, 2018, 30: 126001. doi: 10.11884/HPLPB201830.180059

颗粒流电磁垂直输运装置物理设计

doi: 10.11884/HPLPB201830.180059
基金项目: 

国家自然科学基金项目 11375122

详细信息
    作者简介:

    黄燃(1987—), 男, 博士研究生, 从事粒子加速器束腔相互作用研究, burn4028@impcas.ac.cn

    通讯作者:

    何源(1973—), 男, 博士, 研究员, 从事连续波超导强流直线加速器研究, hey@impcas.ac.cn

  • 中图分类号: TL352.1

Physical design of a granular flow electromagnetic vertical transport device

  • 摘要: 为满足中国加速器驱动的次临界系统(C-ADS) 对于可靠性的要求, 计划采用基于螺线管的电磁垂直输运方案, 将经过质子束辐照后下落的散裂靶颗粒球再次输运至初始高度。基于解析方法对颗粒流垂直输运装置进行了分析和设计, 通过基于螺线管散热、径轴向颗粒流聚散焦效应和互感损耗等方面的考虑, 得到了适合于垂直输运颗粒流的螺线管驱动方式和螺线管构型及排布。利用基于本文解析方法的模拟程序, 对不同输运管道内径、不同螺线管驱动电流和不同螺线管构型和排布下的颗粒流垂直输运装置进行了模拟, 并从中筛选出了该装置的优化设计。模拟表明, 采用该优化设计的输运装置可将质量流量为19.6kg/s的颗粒流垂直输运至40m高度, 并满足颗粒球出口速度足够大的要求。
  • 图  1  恒定电流驱动的螺线管产生的轴向磁场力的典型分布

    Figure  1.  Typical distribution of the axial magnetic force generated by a constant current driven solenoid

    图  2  径向和轴向匝数相对大小对磁场力轴向分布的影响

    Figure  2.  Impact of different relation between radial and axial turns on the axial distribution of the magnetic force

    图  3  螺线管加速区间示意图

    Figure  3.  Schematic drawing of the acceleration interval of a solenoid

    图  4  螺线管轴向磁场分量的典型分布

    Figure  4.  Typical distribution of the axial magnetic field component of a solenoid

    图  5  颗粒流垂直输运装置模拟结果

    Figure  5.  Simulation results of the granular flow vertical transport device

  • [1] 詹文龙, 徐瑚珊. 未来先进核裂变能——ADS嬗变系统[J]. 中国科学院院刊, 2012, 27(3): 375-381. doi: 10.3969/j.issn.1000-3045.2012.03.017

    Zhan Wenlong, Xu Hushan. Advanced fission energy program-ADS Transmutation System. Bulletin of Chinese Academy of Sciences, 2012, 27(3): 375-381 doi: 10.3969/j.issn.1000-3045.2012.03.017
    [2] Li Z, Cheng P, Geng H, et al. Physics design of an accelerator for an accelerator-driven subcritical system[J]. Physical Review Special Topics-Accelerators and Beams, 2013, 16: 080101. doi: 10.1103/PhysRevSTAB.16.080101
    [3] Wang Z J, He Y, Liu Y, et al. The design simulation of the superconducting section in the ADS injector Ⅱ[J]. Chinese Physics C, 2012, 36(3): 256-260. doi: 10.1088/1674-1137/36/3/012
    [4] Huang B, Ng K-Y. Analysis of HOM problems in the C-ADS main linac[R]. FERMILAB-FN-1027-APC, 2017.
    [5] Yang L, Zhan W L. New concept for ADS spallation target: Gravity-driven dense granular flow target[J]. Science China Technological Sciences, 2015, 58(10): 1705-1711. doi: 10.1007/s11431-015-5894-0
    [6] 赵丽霞, 吕明邦, 张翔, 等. 磁力提升装置样机的数值分析与实验研究[J]. 强激光与粒子束, 2015, 27: 076003. doi: 10.11884/HPLPB201527.076003

    Zhao Lixia, Lü Mingbang, Zhang Xiang, et al. Numerical analysis and experimental study of the magnetic lifting device prototype. High Power Laser and Particle Beams, 2015, 27: 076003 doi: 10.11884/HPLPB201527.076003
    [7] 赵丽霞, 吕明邦, 张翔, 等. 行波磁场提升装置的分析及实验研究[J]. 原子能科学技术, 2016, 50(5): 933-938. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201605028.htm

    Zhao Lixia, Lü Mingbang, Zhang Xiang, et al. Analysis and experimental study of lifting device based on traveling magnetic field. Atomic Energy Science and Technology, 2016, 50(5): 933-938 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201605028.htm
    [8] Smolkin M R, Smolkin R D. Calculation and analysis of the magnetic force acting on a particle in the magnetic field of separator. Analysis of the equations used in the magnetic methods of separation[J]. IEEE Trans Magnetics, 2006, 42(11): 3682-3693. doi: 10.1109/TMAG.2006.880688
    [9] Jackson J D. Classical electrodynamics[M]. 3rd ed. New York: Wiley, 1999.
    [10] Abramowitz M, Stegun I A. Handbook of mathematical functions with formulas, graphs, and mathematical tables[M]. Washington: US Govt Print Off, 1964.
    [11] OPerating environment for electromagnetic research and analysis[M/OL]. http://www.operafea.com/.
    [12] Holman J P. Heat transfer[M]. 10th ed. Boston: McGraw Hill Higher Education, 2010.
    [13] Wangler T P. RF linear accelerators[M]. 2nd ed. Weinheim: Wiley-VCH, 2008.
    [14] Intel® Math Kernel Library[M/OL]. https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation/.
  • 加载中
图(5)
计量
  • 文章访问数:  955
  • HTML全文浏览量:  226
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-09-03
  • 刊出日期:  2018-12-15

目录

    /

    返回文章
    返回