留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯覆盖微纳光纤复合波导全光优先吸收特性

莫军 冯国英 廖宇 杨莫愁 周寿桓

莫军, 冯国英, 廖宇, 等. 石墨烯覆盖微纳光纤复合波导全光优先吸收特性[J]. 强激光与粒子束, 2018, 30: 081003. doi: 10.11884/HPLPB201830.180079
引用本文: 莫军, 冯国英, 廖宇, 等. 石墨烯覆盖微纳光纤复合波导全光优先吸收特性[J]. 强激光与粒子束, 2018, 30: 081003. doi: 10.11884/HPLPB201830.180079
Mo Jun, Feng Guoying, Liao Yu, et al. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30: 081003. doi: 10.11884/HPLPB201830.180079
Citation: Mo Jun, Feng Guoying, Liao Yu, et al. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30: 081003. doi: 10.11884/HPLPB201830.180079

石墨烯覆盖微纳光纤复合波导全光优先吸收特性

doi: 10.11884/HPLPB201830.180079
基金项目: 

国家自然科学基金项目 11574221

详细信息
    作者简介:

    莫军(1991-), 男,硕士,从事光调制器研究;mojun@stu.scu.edu.cn

    通讯作者:

    冯国英(1969-), 女,教授,博士生导师,从事激光微纳工程研究;guoing_feng@scu.edu.cn

  • 中图分类号: TN25

All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide

  • 摘要: 利用二氧化碳激光器加热法,将普通单模光纤拉制成微纳光纤,用湿法转移石墨烯覆盖在微纳光纤上构成复合波导,不同波长的光通过耦合器进入复合波导,以倏逝波的形式与石墨烯相互作用,开展石墨烯优先吸收特性的研究。当短波作为泵浦光时,随着入射强度的增长,测得输出端长波信号光光谱的变化,获得了约3.5 dB的调制深度,0.62 dB·mW-1的调制效率。当长波作为泵浦光并改变入射光强时,在输出端测得作为信号光的短波透过率变化约1.9%。实验结果表明,随着任意波长泵浦光入射光强的增长,复合波导对其表现出优先吸收的特性。实验还测试了长波和短波分别经过复合波导后透过率随输入功率的变化,得出长波的透过率增加速度比短波更快,并从能带和倏逝波两方面作出了对应的理论分析。
  • 图  1  单层石墨的拉曼散射谱图, 插图为PMMA/石墨烯膜包裹的微纳光纤实物图

    Figure  1.  Raman scattering spectrum of single-layer graphite, the inset shows a microfiber wrapped by PMMA/graphene film

    图  2  基于GCM优先吸收实验连接图

    Figure  2.  Experimental connection diagram based on GCM preferential absorption

    图  3  短波泵浦长波实验

    Figure  3.  Experiment of short wavelength pumping long wavelength

    图  4  长波泵浦短波实验

    Figure  4.  Experiment of long wavelength pumping short wavelength

    图  5  透过率随功率的变化

    Figure  5.  Transmittance changes with power

    图  6  微纳光纤中基模模场分布以及光斑图

    Figure  6.  Distribution of base mode and spot pattern in microfiber

    图  7  不同光子能量下单层石墨烯吸收特性

    Figure  7.  Single-layer graphene absorption characteristics under different photon energies

  • [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. doi: 10.1126/science.1102896
    [2] Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238. doi: 10.1038/nphoton.2016.15
    [3] 吴凌远, 李阳龙, 刘国栋, 等. 1064 nm纳秒激光对石墨烯的损伤效应研究[J]. 强激光与粒子束, 2015, 27: 081009. doi: 10.11884/HPLPB201527.081009

    Wu Lingyuan, Li Yanglong, Liu Guodong, et al. 1064 nm nanosecond laser induced damage effection graphene. High Power Laser and Particle Beams, 2015, 27: 081009 doi: 10.11884/HPLPB201527.081009
    [4] 李艳娜, 汤跃, 韦丽萍, 等. SOI环形光波导谐振腔双层石墨烯调制器[J]. 强激光与粒子束, 2015, 27: 024109. doi: 10.11884/HPLPB201527.024109

    Li Yanna, Tang Yue, Wei Liping, et al. SOI-ring waveguide coupled double-layer graphene modulator. High Power Laser and Particle Beams, 2015, 27: 024109 doi: 10.11884/HPLPB201527.024109
    [5] Liu Ming, Yin Xiaobo, Ulinavila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64. doi: 10.1038/nature10067
    [6] Koester S J, Li Mo. High-speed waveguide-coupled graphene-on-graphene optical modulators[J]. Applied Physics Letters, 2012, 100(17): 611.
    [7] Liu Ming, Yin Xiaobo, Zhang Xiang. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482. doi: 10.1021/nl204202k
    [8] Lee C C, Suzuki S, Xie W, et al. Broadband graphene electro-optic modulators with sub-wavelength thickness[J]. Optics Express, 2012, 20(5): 5264-5269. doi: 10.1364/OE.20.005264
    [9] Luo Siyuan, Wang Yanan, Xin Tongxin, et al. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10(1): 199. doi: 10.1186/s11671-015-0866-7
    [10] Liu Z B, Feng M, Jiang W S, et al. Broadband all-optical modulation using a graphene-covered-microfiber[J]. Laser Physics Letters, 2013, 10: 065901. doi: 10.1088/1612-2011/10/6/065901
    [11] Li Wei, Chen Bigeng, Meng Chao, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955. doi: 10.1021/nl404356t
    [12] Liao Y, Feng G Y, Zhou H, et al. Ultra-broadband all-optical graphene modulator[J]. IEEE Photonics Technology Letters, 2018, 30(8): 661-664. doi: 10.1109/LPT.2018.2800769
    [13] Wang Ruiduo, Li Diao, Wu Hao, et al. All-optical intensity modulator by polarization dependent graphene-microfiber waveguide[J]. IEEE Photonics Journal, 2017, 9(5): 1-8.
    [14] 张慧, 陈宇, 王志腾, 等. 石墨烯可调谐被动调Q掺铒光纤激光器[J]. 强激光与粒子束, 2012, 24(12): 2807-2810. doi: 10.3788/HPLPB20122412.2807

    Zhang Hui, Chen Yu, Wang Zhiteng, et al. Wavelength-tunable passively Q-switched erbium doped fiber laser with graphene-based saturable absorber. High Power Laser and Particle Beams, 2012, 24(12): 2807-2810 doi: 10.3788/HPLPB20122412.2807
    [15] Xing Guichuan, Guo Hangchen, Zhang Xinhai, et al. The physics of ultrafast saturable absorption in graphene[J]. Optics Express, 2010, 18(5): 4564. doi: 10.1364/OE.18.004564
    [16] Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters, 2006, 6(12): 2667-2673. doi: 10.1021/nl061420a
    [17] Chen Jinhui, Zheng Bicai, Shao Guanghao, et al. An all-optical modulator based on a stereo graphene-microfiber structure[J]. Light Science & Applications, 2015, 4(12): e360.
    [18] Zhang H, Healy N, Li S, et al. Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss[J]. Scientific Reports, 2016, 6: 23512. doi: 10.1038/srep23512
    [19] Garmire E. Resonant optical nonlinearities in semiconductors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 6(6): 1094-1110.
    [20] Ruzicka B A, Wang Shuai, Liu Jianwei, et al. Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition[J]. Optical Materials Express, 2012, 2(6): 708-716. doi: 10.1364/OME.2.000708
    [21] Zhang F, Han S, Liu Y, et al. Dependence of the saturable absorption of graphene upon excitation photon energy[J]. Applied Physics Letters, 2015, 106(9): 666-669.
  • 加载中
图(7)
计量
  • 文章访问数:  1065
  • HTML全文浏览量:  317
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-21
  • 修回日期:  2018-04-27
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回