留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Constructing accurate radio environment maps based on Shepard interpolation

Mao Danlei Qian Zuping Shao Wei Xue Hong

茅丹磊, 钱祖平, 邵尉, 等. 基于Shepard插值技术的电磁环境地图构建[J]. 强激光与粒子束, 2018, 30: 113201. doi: 10.11884/HPLPB201830.180082
引用本文: 茅丹磊, 钱祖平, 邵尉, 等. 基于Shepard插值技术的电磁环境地图构建[J]. 强激光与粒子束, 2018, 30: 113201. doi: 10.11884/HPLPB201830.180082
Mao Danlei, Qian Zuping, Shao Wei, et al. Constructing accurate radio environment maps based on Shepard interpolation[J]. High Power Laser and Particle Beams, 2018, 30: 113201. doi: 10.11884/HPLPB201830.180082
Citation: Mao Danlei, Qian Zuping, Shao Wei, et al. Constructing accurate radio environment maps based on Shepard interpolation[J]. High Power Laser and Particle Beams, 2018, 30: 113201. doi: 10.11884/HPLPB201830.180082

基于Shepard插值技术的电磁环境地图构建

doi: 10.11884/HPLPB201830.180082
详细信息
  • 中图分类号: TN92

Constructing accurate radio environment maps based on Shepard interpolation

Funds: National Natural Science Foundation of China; "13th Five-Year" Research on the Advance Project of the Army's Common Information System
More Information
    Author Bio:

    Mao Danlei(1993—), male, master degree candidate, engaged in electromagnetic spectrum management; 18896582007@163.com

  • 摘要: 随着信息产业和相关无线电通信业务的不断发展,频谱管理问题将更具挑战性。合适的频谱管理方法使得发射机有效地重复利用频率,用户设备(UE)可以选择最佳的基站。电磁环境地图(REM)概念作为解决频谱稀缺性和提高频谱利用率的工具,使不同的用户有效地共享频谱资源。电磁环境地图正在成为越来越普及的干扰管理和资源分配方法。构建电磁环境地图并不需要昂贵和耗时的调查或复杂的校准过程。给出了Shepard插值技术,并在某些方面对其进行改进,从而构建精确的电磁环境地图。此外,通过均方根误差(RMSE)作为性能度量,对测量值的数量和分布的影响进行分析比较。仿真结果表明,通过迭代聚类采样和优化的Shepard插值技术,并增加测量次数,从均方根误差的性能指标角度出发,能获得最精确的电磁环境地图。
  • Figure  1.  The functional REM architecture

    Figure  2.  The system model

    Figure  3.  The real-time data collection equipment used in the measurements, with the transmitter, antenna and spectrum analyzer visible

    Figure  4.  RMSE with three sampling categories for (a) classic Shepard interpolation and (b) modified Shepard interpolation

    Figure  5.  The final RMSE values with three sampling categories

    Figure  6.  REMs by (a) classic Shepard interpolation and (b) modified Shepard interpolation

    Figure  7.  The RMSE comparison of two interpolation methods

  • [1] Debroy S, Bhattacharjee S, Chatterjee M. Spectrum map and its application in resource management in cognitive radio networks[J]. IEEE Trans Cognitive Communications & Networking, 2016, 1(4): 406-419.
    [2] Pesko M, Javornik T, Vidmar L, et al. The indirect self-tuning method for constructing radio environment map using omnidirectional or directional transmitter antenna[J]. Eurasip Journal on Wireless Communications & Networking, 2015, 2015(1): 50.
    [3] Denkovski D, Atanasovski V, Gavrilovska L, et al. Reliability of a radio environment map: Case of spatial interpolation techniques[C]//IEEE International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications. 2012: 248-253.
    [4] Vreten S, Yongaçoǧlu A, Petriu E. A comparison of interference cartography generation techniques in cognitive radio networks[C]//IEEE International Conference on Communications. 2012: 1879-1883.
    [5] Alaya-Feki A B H, Jemaa S B, Sayrac B, et al. Informed spectrum usage in cognitive radio networks: Interference cartography[C]//IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. 2008: 1-5.
    [6] Lu G Y, Wong D W. An adaptive inverse-distance weighting spatial interpolation technique[J]. Computers & Geosciences, 2008, 34(9): 1044-1055.
    [7] Riihijarvi J, Mahonen P, Wellens M, et al. Characterization and modelling of spectrum for dynamic spectrum access with spatial statistics and random fields[C]//IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. 2008: 1-6.
    [8] Farnham T. Radio environment map techniques and performance in the presence of errors[C]//IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications. 2016: 1-6.
    [9] Höyhtyä M, Mämmelä A, Eskola M, et al. Spectrum occupancy measurements: A survey and use of interference maps[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2386-2414.
    [10] Riihijarvi J, Nasreddine J, Mahonen P. Demonstrating radio environment map construction from massive data sets[C]//IEEE Internation Sysposium on Dynamic Spectrum Access Networks. 2012.
    [11] Jardak C, MäHöNen P, RiihijäRvi J. Spatial big data and wireless networks: experiences, applications, and research challenges[J]. IEEE Network, 2014, 28(4): 26-31. doi: 10.1109/MNET.2014.6863128
    [12] Sato K, Fujii T. Kriging-based interference power constraint: Integrated design of the radio environment map and transmission power[J]. IEEE Trans Cognitive Communications & Networking, 2017, 3(1): 13-25.
    [13] Dwarakanath R C, Naranjo J D, Ravanshid A. Modeling of interference maps for Licensed Shared Access in LTE-advanced networks supporting carrier aggregation[C]//2013 IFIP Wireless Days. 2013: 1-6.
    [14] Shepard D. A two-dimensional interpolation function for irregularly-spaced data[C]//ACM National Conference. 1968: 517-524.
  • 加载中
图(7)
计量
  • 文章访问数:  863
  • HTML全文浏览量:  200
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-22
  • 修回日期:  2018-08-09
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回