留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅冷快堆M2LFR-1000堆芯燃料管理方案设计

方海涛 赵永松 张喜林 周兴彬 李卫 陈红丽

方海涛, 赵永松, 张喜林, 等. 铅冷快堆M2LFR-1000堆芯燃料管理方案设计[J]. 强激光与粒子束, 2018, 30: 096003. doi: 10.11884/HPLPB201830.180083
引用本文: 方海涛, 赵永松, 张喜林, 等. 铅冷快堆M2LFR-1000堆芯燃料管理方案设计[J]. 强激光与粒子束, 2018, 30: 096003. doi: 10.11884/HPLPB201830.180083
Fang Haitao, Zhao Yongsong, Zhang Xilin, et al. In-core fuel management strategy design of lead-cooled fast reactor M2LFR-1000[J]. High Power Laser and Particle Beams, 2018, 30: 096003. doi: 10.11884/HPLPB201830.180083
Citation: Fang Haitao, Zhao Yongsong, Zhang Xilin, et al. In-core fuel management strategy design of lead-cooled fast reactor M2LFR-1000[J]. High Power Laser and Particle Beams, 2018, 30: 096003. doi: 10.11884/HPLPB201830.180083

铅冷快堆M2LFR-1000堆芯燃料管理方案设计

doi: 10.11884/HPLPB201830.180083
详细信息
    作者简介:

    方海涛(1993—),男,硕士研究生,从事核反应堆物理分析研究;htfang@mail.ustc.edu.cn

  • 中图分类号: TL329

In-core fuel management strategy design of lead-cooled fast reactor M2LFR-1000

  • 摘要: 堆芯燃料管理是反应堆设计中极为重要而且复杂的工作,直接影响着堆芯的经济性。目前国内外对于压水堆等传统热堆已有了较为丰富和成熟的燃料管理计算方法,但对于快堆,由于其中子能谱硬,与传统热堆相比有着不同的控制方式和功率分布,快堆的堆芯燃料管理缺乏系统研究。针对中国科学技术大学自主研发的强迫循环冷却的铅基快堆M2LFR-1000,应用SRAC/COREBN软件包进行堆芯燃耗计算,根据燃耗深度提取核素核子密度,计算伪平衡循环参数进行燃料管理预估,然后进行首循环装料、过渡循环和平衡循环燃料管理方案设计。结果表明:对M2LFR-1000堆芯外区燃料换料组件Pu的富集度进行优化,可以延长换料周期到540 d,提高平均卸料燃耗深度;伪平衡循环结果与平衡循环基本一致,伪平衡循环可以用于燃料管理预估。
  • 图  1  伪平衡循环初始参数示意图

    Figure  1.  Schematic of initial parameters for pseudo-equilibrium cycle

    图  2  M2LFR-1000堆芯燃料管理方案设计计算流程图

    Figure  2.  Flow chart of core fuel management scheme design of M2LFR-1000

    图  3  M2LFR-1000堆芯计算模型

    Figure  3.  Calculation model for M2LFR-1000 core

    图  4  M2LFR-1000换料堆芯布置

    Figure  4.  M2LFR-1000 core layout for refueling

    图  5  有效增殖因子随运行时间的变化

    Figure  5.  keff of the core during operation

    表  1  M2LFR-1000换料设计要求

    Table  1.   Main requirements of M2LFR-1000 for reloading

    core parameter design requirement
    cycle length as long as possible
    assembly power peaking factor <1.30
    fuel Doppler coefficient <0
    shutdown margin ≥2900 pcm
    assembly burnup <100 GWd/tHM
    下载: 导出CSV

    表  2  内外分区三批换料伪平衡循环计算结果

    Table  2.   Pseudo-equilibrium cycle result for three batches reloading

    parameters value unit
    cycle length 450 d
    BOC maximum linear power density 117.8 W/cm
    MOC maximum linear power density 118.9 W/cm
    EOC maximum linear power density 118.3 W/cm
    BOC maximum neutron flux 2.15 1015 n/(cm2·s)
    MOC maximum neutron flux 2.17 1015 n/(cm2·s)
    EOC maximum neutron flux 2.13 1015 n/(cm2·s)
    BOC assembly power peaking factor 1.21
    MOC assembly power peaking factor 1.20
    EOC assembly power peaking factor 1.20
    BOC fuel Doppler coefficient -1.05 pcm/K
    MOC fuel Doppler coefficient -1.06 pcm/K
    EOC fuel Doppler coefficient -1.05 pcm/K
    BOC coolant temperature coefficient -0.13 pcm/K
    MOC coolant temperature coefficient -0.20 pcm/K
    EOC coolant temperature coefficient -0.16 pcm/K
    BOC axial expansion coefficient -102.2 pcm/%
    MOC axial expansion coefficient -104.7 pcm/%
    EOC axial expansion coefficient -108.5 pcm/%
    BOC radial expansion coefficient -485.2 pcm/%
    MOC radial expansion coefficient -494.6 pcm/%
    EOC radial expansion coefficient -496.7 pcm/%
    BOC effective delay neutron fraction 341 pcm
    MOC effective delay neutron fraction 349 pcm
    EOC effective delay neutron fraction 354 pcm
    BOC prompt neutron lifetime 886 ns
    MOC prompt neutron lifetime 862 ns
    EOC prompt neutron lifetime 855 ns
    shutdown margin 5696 pcm
    inner maximum discharge assembly burnup 48.60 GWd/tHM
    outer maximum discharge assembly burnup 49.82 GWd/tHM
    inner average discharge assembly burnup 47.47 GWd/tHM
    outer average discharge assembly burnup 41.38 GWd/tHM
    下载: 导出CSV

    表  3  延长换料周期伪平衡循环计算结果

    Table  3.   Pseudo-equilibrium cycle result for extending the refueling cycle

    parameters value unit
    cycle length 540 d
    BOC maximum linear power density 122.9 W/cm
    MOC maximum linear power density 121.4 W/cm
    BOC maximum neutron flux 2.20 1015 n/(cm2·s)
    MOC maximum neutron flux 2.22 1015 n/(cm2·s)
    EOC maximum neutron flux 2.15 1015 n/(cm2·s)
    BOC assembly power peaking factor 1.23
    MOC assembly power peaking factor 1.22
    EOC assembly power peaking factor 1.21
    BOC fuel Doppler coefficient -1.03 pcm/K
    MOC fuel Doppler coefficient -1.02 pcm/K
    EOC fuel Doppler coefficient -1.09 pcm/K
    BOC coolant temperature coefficient -0.20 pcm/K
    MOC coolant temperature coefficient -0.15 pcm/K
    EOC coolant temperature coefficient -0.16 pcm/K
    BOC axial expansion coefficient -95.1 pcm/%
    MOC axial expansion coefficient -112.2 pcm/%
    EOC axial expansion coefficient -120.2 pcm/%
    BOC radial expansion coefficient -371.3 pcm/%
    MOC radial expansion coefficient -398.4 pcm/%
    EOC radial expansion coefficient -409.6 pcm/%
    BOC effective delay neutron fraction 360 pcm
    MOC effective delay neutron fraction 383 pcm
    EOC effective delay neutron fraction 371 pcm
    BOC prompt neutron lifetime 928 ns
    MOC prompt neutron lifetime 839 ns
    EOC prompt neutron lifetime 835 ns
    shutdown margin 5325 pcm
    inner maximum discharge assembly burnup 56.75 GWd/tHM
    outer maximum discharge assembly burnup 62.35 GWd/tHM
    inner average discharge assembly burnup 55.14 GWd/tHM
    outer average discharge assembly burnup 51.18 GWd/tHM
    下载: 导出CSV

    表  4  初始及过渡循环计算结果

    Table  4.   Core results of initial and transition cycle for 540 d reloading

    parameter cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6
    cycle length/d 660 510 510 540 540 540
    BOC maximum linear power density/(W·cm-1) 132.8 117.4 119.4 123.4 123.8 126.3
    MOC maximum linear power density/(W·cm-1) 122.1 127.4 122.6 122.6 122.6 129.8
    EOC maximum linear power density/(W·cm-1) 146.1 117.5 121.7 113.9 120.8 114.4
    BOC maximum neutron flux/[1015 n/(cm2·s)] 2.33 2.12 2.17 2.22 2.21 2.26
    MOC maximum neutron flux/[1015 n/(cm2·s)] 2.19 2.28 2.25 2.25 2.25 2.35
    EOC maximum neutron flux/[1015 n/(cm2·s)] 3.06 2.15 2.25 2.08 2.20 2.09
    BOC assembly power peaking factor 1.29 1.23 1.21 1.25 1.24 1.23
    MOC assembly power peaking factor 1.25 1.26 1.19 1.19 1.19 1.28
    EOC assembly power peaking factor 1.26 1.20 1.19 1.22 1.20 1.21
    BOC fuel Doppler coefficient/(pcm/K) -1.10 -1.08 -1.05 -1.03 -1.04 -1.05
    MOC fuel Doppler coefficient/(pcm/K) -1.04 -1.07 -0.98 -0.98 -0.98 -1.01
    EOC fuel Doppler coefficient/(pcm/K) -1.06 -1.04 -1.00 -1.01 -1.01 -0.99
    BOC coolant temperature coefficient/(pcm/K) -0.18 -0.15 -0.17 -0.16 -0.20 -0.16
    MOC coolant temperature coefficient/(pcm/K) -0.14 -0.19 -0.11 -0.11 -0.11 -0.14
    EOC coolant temperature coefficient/(pcm/K) -0.17 -0.17 -0.16 -0.16 -0.16 -0.15
    BOC axial expansion coefficient/(pcm/%) -95.1 -103.2 -101.3 -96.7 -94.6 -88.5
    MOC axial expansion coefficient/(pcm/%) -97.2 -107.3 -109.2 -99.4 -99.2 -94.3
    EOC axial expansion coefficient/(pcm/%) -89.6 -115.8 -112.5 -103.9 -89.4 -92.1
    BOC radial expansion coefficient/(pcm/%) -402.6 -452.7 -449.7 -409.6 -401.2 -394.8
    MOC radial expansion coefficient/(pcm/%) -408.3 -459.4 -461.3 -415.2 -412.9 -406.3
    EOC radial expansion coefficient/(pcm/%) -396.2 -466.3 -464.8 -424.1 -396.1 -402.7
    BOC effective delay neutron fraction/pcm 328 333 352 369 364/ 335
    MOC effective delay neutron fraction/pcm 369 339 342 342 342 358
    EOC effective delay neutron fraction/pcm 342 329 326 341 318 317
    BOC prompt neutron lifetime/ns 888 909 841 885 906 845
    MOC prompt neutron lifetime/ns 861 927 907 907 907 859
    EOC prompt neutron lifetime/ns 899 858 863 820 843 835
    shutdown margin/pcm 5202 5419 5394 5215 5195 5180
    inner maximum discharge assembly burnup/(GWd/tHM) 22.76 41.35 59.42 54.59 55.59 56.64
    outer maximum discharge assemblyburnup/(GWd/tHM) 26.91 45.42 61.83 59.70 60.79 61.53
    inner average discharge assemblyburnup/(GWd/tHM) 21.88 40.04 57.80 53.01 53.86 54.90
    outer average discharge assemblyburnup/(GWd/tHM) 25.06 39.14 51.17 49.79 50.84 51.47
    下载: 导出CSV

    表  5  540 d换料平衡循环计算结果

    Table  5.   Core results of equilibrium cycle for 540 d reloading

    parameter value unit
    cycle length 540 d
    BOC maximum linear power density 126.3 W/cm
    MOC maximum linear power density 129.8 W/cm
    EOC maximum linear power density 114.4 W/cm
    BOC maximum neutron flux 2.26 1015 n/(cm2·s)
    MOC maximum neutron flux 2.35 1015 n/(cm2·s)
    EOC maximum neutron flux 2.09 1015 n/(cm2·s)
    BOC assembly power peaking factor 1.23
    MOC assembly power peaking factor 1.28
    EOC assembly power peaking factor 1.21
    BOC fuel Doppler coefficient -1.05 pcm/K
    MOC fuel Doppler coefficient -1.01 pcm/K
    EOC fuel Doppler coefficient -0.99 pcm/K
    BOC coolant temperature coefficient -0.16 pcm/K
    MOC coolant temperature coefficient -0.14 pcm/K
    EOC coolant temperature coefficient -0.15 pcm/K
    BOC axial expansion coefficient -88.5 pcm/%
    MOC axial expansion coefficient -94.3 pcm/%
    EOC axial expansion coefficient -92.1 pcm/%
    BOC radial expansion coefficient -394.8 pcm/%
    MOC radial expansion coefficient -406.3 pcm/%
    EOC radial expansion coefficient -402.7 pcm/%
    BOC effective delay neutron fraction 335 pcm
    MOC effective delay neutron fraction 358 pcm
    EOC effective delay neutron fraction 317 pcm
    BOC prompt neutron lifetime 845 ns
    MOC prompt neutron lifetime 859 ns
    EOC prompt neutron lifetime 835 ns
    shutdown margin 5180 pcm
    inner maximum discharge assembly burnup 56.64 GWd/tHM
    outer maximum discharge assembly burnup 61.53 GWd/tHM
    inner average discharge assembly burnup 54.90 GWd/tHM
    outer average discharge assembly burnup 51.47 GWd/tHM
    下载: 导出CSV
  • [1] Alemberti A, Carlsson J, Malambu E, et al. European lead fast reactor-ELSY[J]. Nuclear Engineering & Design, 2011, 241(9): 3470-3480.
    [2] 肖宏才. 自然安全的BREST铅冷快堆——现代核能体系中最具发展潜力的堆型[J]. 核科学与工程, 2015, 35(3): 395-406. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201503001.htm

    Xiao Hongcai. Lead-cooled natural safe fast reactor BREST—The most potential reactor in the modern nuclear power system. Nuclear Science and Engineering, 2015, 35(3): 395-406 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201503001.htm
    [3] Chen H, Chen Z, Chen C, et al. Conceptual design of a small modular natural circulation lead cooled fast reactor SNCLFR-100[J]. International Journal of Hydrogen Energy, 2016, 41(17): 7158-7168. doi: 10.1016/j.ijhydene.2016.01.101
    [4] Chen H, Zhang X, Zhao Y, et al. A medium-power modular lead-cooled fast reactor M2LFR-1000 emphasizing application of optimization methods in preliminary design[C]//The 8th Korea-China Workshop on Nuclear Reactor Thermal-Hydraulics (WORTH-8). 2017.
    [5] 李友谊, 杨晓强, 姚进国, 等. 田湾核电站18个月换料燃料管理策略[J]. 原子能科学技术, 2014, 48(11): 2072-2077. doi: 10.7538/yzk.2014.48.11.2072

    Li Youyi, Yang Xiaoqiang, Yao Jinguo, et al. Fuel management scheme on 18 months refueling for Tianwan nuclear power station. Atomic Energy Science and Technology, 2014, 48(11): 2072-2077 doi: 10.7538/yzk.2014.48.11.2072
    [6] 姚红. 157组燃料组件组成的堆芯燃料管理研究[J]. 原子能科学技术, 2013, 47(10): 1845-1851. doi: 10.7538/yzk.2013.47.10.1845

    Yao Hong. Fuel management study on PWR core included of 157 fuel assemblies. Atomic Energy Science and Technology, 2013, 47(10): 1845-1851 doi: 10.7538/yzk.2013.47.10.1845
    [7] 刘国明, 郭治鹏. HPR1000堆芯装载50%MOX组件的燃料管理方案[J]. 强激光与粒子束, 2017, 29: 036010. doi: 10.11884/HPLPB201729.160376

    Liu Guoming, Guo Zhipeng. Fuel loading pattern with 50% MOX fuel in HPR1000 core. High Power Laser and Particle Beams, 2017, 29: 036010 doi: 10.11884/HPLPB201729.160376
    [8] 赵晶, 刘志宏, 郭德朋, 等. 大功率压水堆堆芯燃料管理设计[J]. 原子能科学技术, 2012, 46(s1): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2012S1084.htm

    Zhao Jing, Liu Zhihong, Guo Depeng, et al. In-core fuel management design of large power PWR. Atomic Energy Science and Technology, 2012, 46(s1): 397-402 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2012S1084.htm
    [9] Castillo A, Ortiz J J, Montes J L, et al. Fuel loading and control rod patterns optimization in a BWR using Tabu search[J]. Annals of Nuclear Energy, 2007, 34(3): 207-212.
    [10] Ortiz J J, Requena I. Using a multi-state recurrent neural network to optimize loading patterns in BWRs[J]. Annals of Nuclear Energy, 2004, 31(7): 789-803. doi: 10.1016/j.anucene.2003.11.001
    [11] Grasso G, Petrovich C, Mattioli D, et al. The core design of ALFRED, a demonstrator for the European lead-cooled reactors[J]. Nuclear Engineering & Design, 2014, 278(278): 287-301.
    [12] Petrovich C, Grasso C, Rocchi F. D07-definition of the ETDR core and neutronic characterization—Part Ⅰ[R]. Italy: Centro Ricerche Bologna, 2013.
    [13] Petrovich C. ALFRED core. Summary, synoptic tables, conclusions and recommendations[R]. Italy: Centro Ricerche Bologna, 2013.
    [14] 杨晓燕. 快堆堆芯燃料管理优化研究[D]. 北京: 清华大学, 2010.

    Yang Xiaoyan. Research on optimization of in-core fuel management of fast reactor. Beijing: Tsinghua University, 2010
    [15] Okumura K, Kugo T, Kaneko K, et al. SRAC2006: a comprehensive neutronics calculation code system[R]. Japan Atomic Energy Agency, 2007.
    [16] Okumura K. COREBN: A core burn-up calculation module for SRAC2006[R]. Japan Atomic Energy Agency, 2007.
    [17] X-5 Monte Carlo Team. MCNP-A general Monte Carlo N-particle transport code[R]. Los Alamos National Laboratory, 2003.
    [18] 吕征, 沈峰, 孙志勇, 等. SRAC程序在中国先进研究堆上的应用研究[J]. 原子能科学技术, 2009, 43(s2): 407-411. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2009S2054.htm

    Lü Zheng, Shen Feng, Sun Zhiyong, et al. Application of SRAC system on china advanced research reactor. Atomic Energy Science and Technology, 2009, 43(s2): 407-411 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2009S2054.htm
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  1153
  • HTML全文浏览量:  234
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-22
  • 修回日期:  2018-05-10
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回