留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高平均功率光纤激光技术基础:模式

周朴

周朴. 高平均功率光纤激光技术基础:模式[J]. 强激光与粒子束, 2018, 30: 060201. doi: 10.11884/HPLPB201830.180087
引用本文: 周朴. 高平均功率光纤激光技术基础:模式[J]. 强激光与粒子束, 2018, 30: 060201. doi: 10.11884/HPLPB201830.180087
Zhou Pu. Fundamentals of high-average-power fiber laser technology: Mode[J]. High Power Laser and Particle Beams, 2018, 30: 060201. doi: 10.11884/HPLPB201830.180087
Citation: Zhou Pu. Fundamentals of high-average-power fiber laser technology: Mode[J]. High Power Laser and Particle Beams, 2018, 30: 060201. doi: 10.11884/HPLPB201830.180087

高平均功率光纤激光技术基础:模式

doi: 10.11884/HPLPB201830.180087
基金项目: 

全国优秀博士学位论文作者专项 201329

霍英东教育基金会高等院校青年教师基金资助项目 151062

详细信息
    作者简介:

    周朴(1984—), 男,研究员,博士生导师,主要从事光纤激光与光束合成技术研究;zhoupu203@163.com

  • 中图分类号: O438

Fundamentals of high-average-power fiber laser technology: Mode

  • 摘要: 从具有不同模式特性的光纤激光研究现状出发,指出模式是光纤激光特性的核心参数之一。通过算例给出模式与光束质量之间的关系,引出模式分解技术是准确知晓模式组分和光束质量的关键,介绍常见的模式分解技术。针对模式不稳定效应这一限制光纤激光功率提升的新现象,归纳总结了不同因素对模式不稳定效应产生阈值的影响,梳理了提高阈值的物理原理和实现方法。从高阶模抑制、特定高阶模式和结构光场输出等三个方面介绍了光纤激光模式控制的最新进展。
  • 图  1  不同V值下不同本征模式的M2因子[11]

    Figure  1.  The M2 factor of different eigenmode in case of different V number[11]

    图  2  不同LP11e模比例α以及不同LP11e模与LP01模的相位差ψ下LP01与LP11e相干叠加光束的M2因子[11]

    Figure  2.  The M2 factor of the beam coherently combined by LP01 mode and LP11e mode in case of different mode weight α and relative phase difference ψ [11]

    图  3  成像法实验结构示意图

    Figure  3.  Experimental setup for imaging method

    图  4  直接测量法实验结构示意图

    Figure  4.  Experimental setup for direct measuring method

    图  5  改进型阶跃折射率光纤示意图

    Figure  5.  Illumination of improved step-index fiber

    图  6  全新机制光纤示意图

    Figure  6.  Schematic dravings of fibers based on new mechanisms

    图  7  基于光纤激光的结构光场产生

    Figure  7.  Structured light field generation based on fiber laser

    图  8  基于光纤放大器的结构光场产生

    Figure  8.  Structured light field generation based on fiber amplifier

    图  9  可定制光场输出的光纤激光器[147]

    Figure  9.  Fiber Laser with on-demand output property[147]

    表  1  公开报道的具有代表性的单模和多模光纤激光器的特性参数

    Table  1.   Characteristic parameters of representative single-mode and multi-mode fiber lasers

    output power/kW M2 beam parameter product(BPP) references 备注
    single-mode laser 9.6 ~1.2 [4] for the diffraction limited beam in 1 μm wavelength band,M2 = 1,BPP=0.33 mm·mrad [6]
    single-mode laser 10 <1.5 [5]
    multi-mode laser 20 15 15 mm·mrad [6]
    multi-mode laser 50 30 10 mm·mrad [6]
    multi-mode laser 100 16 mm·mrad [7]
    下载: 导出CSV

    表  2  模式不稳定阈值的影响因素

    Table  2.   Factors of influencing mode instability(MI) threshold

    first level second level third level conclusions references
    optical fiber fiber core/cladding diameter lower core-cladding ratio, higher MI threshold [45-47]
    numerical aperture of fiber core numerical aperture decreases, MI threshold increases [48-49]
    fiber doping doping concentration independent of longitudinal distribution of doping concentration [50]
    doping radius partially doped area decreases and MI threshold increases [51-54]
    photodarkening photodarkening increased, MI threshold decreases [55-58]
    characteristics of polarization maintaining MI threshold is irrelevant with polarization maintaining; polarization control causes amplitude modulation, which is relevant [59-62]
    fiber material optimization of fiber materials can improve the MI threshold [63-65]
    system signal light power of signal light increasing the signal light power can improve the MI threshold. [66-67]
    signal noise relative intensity noise increases,MI threshold decreases [45]
    initial high-order mode ratio initial high-order mode components increases,MI threshold decreases [51, 68]
    wavelength of signal light MI threshold is related to the signal light wavelength [69-72]
    linewidth of signal light MI threshold is affected by relatively wide linewidth [42, 73-74]
    amplitude modulation of signal light suppressing signal amplitude modulation helps increasing MI threshold [61-62]
    cooling capacity MI threshold is independent of symmetric cooling [43, 62]
    pump source pump wavelength reducing pump absorption cross section can increase MI threshold [75]
    hybrid pump increasing the wavelength component deviating absorpting peak can increase MI threshold [43]
    pump modulation suppression of pump power/spectrum modulation can increase MI threshold [61]
    pump modes pump direction bidirectional pump and backward pump can increase MI threshold [43, 76-77]
    side pump multi-point side pumping can increase MI threshold [43, 77]
    higher-order mode loss increasing higher-order mode loss can increase MI threshold [55, 78-81]
    下载: 导出CSV

    表  3  提高模式不稳定阈值的技术手段

    Table  3.   Technical measures to increase the mode instability threshold

    physical mechanism implementation method technical measure notes references
    increase high-order mode loss increase high-order mode bending loss reduce bending radius bending can lead to changes in the area of the optical fiber module
    reduce numerical aperture of fiber core [49, 82]
    reduce core diameter small fiber core is easy to stimulate Raman scattering and other effects
    optimize fiber coiling [83]
    increase signal wavelength increasing the wavelength of signal light will lead to increase of quantum loss
    optimize optical fiber design gain-cut fiber fiber bending easily leads to more overlap of higher-order modes with doped regions [84]
    large air hole spacing fiber increase the threshold by 3 times [36]
    distributed mode filter fiber increase the threshold by 1.5 times [56]
    chirp coupled core fiber increase the threshold by 2 times [85-86]
    all-solid photonic band gap fiber [87-88]
    conical fiber [89]
    increase gain saturation reduce the core cladding ratio absorption coefficient decreases, long fibers are required, and nonlinear effects are common [47]
    change the wavelength of the semiconductor pump absorption coefficient decreases, long fibers are required, and nonlinear effects are common
    change the pump light injection direction for large-core fiber, the effect is limited [76, 90]
    increase injection signal power the stimulated Raman scattering threshold decreases [56, 91-92]
    change signal wavelength unconventional bands need to effectively inhibit ASE [72, 93-95]
    reduce quantum loss in-band pumping absorption coefficient decreases, long fibers are required, and nonlinear effects are common
    下载: 导出CSV
  • [1] Shiner B. Recent progress in high power fiber lasers[R]. Laser Applications Workshop, 2009.
    [2] Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser[C]//Advanced Solid State Laser. 2013: ATh4A. 2.
    [3] http://www.ipgphotonics.com
    [4] Gapontsev V, Fomin V, Ferin A, et al. Diffraction limited ultra-high-power fibre lasers[C]//Advanced Solid State Laser. 2010: AWA1.
    [5] Protz R, Zoz J, Geidek F, et al. High-power beam combining—a step to a future laser weapon system[C]//Proc of SPIE. 2012: 854708.
    [6] Injeyan H, Pflug G C, Vespucci M T. High power laser handbook[M]. New York: McGraw-Hill, 2011.
    [7] YLS series 10-100 kW datasheet[DB/OL]. http://www.ipgphotonics.com
    [8] Paschotta R. Field guide to optical fiber technology[M]. New York: SPIE Press, 2010.
    [9] Okamoto K. Fundamentals of optical waveguides[M]. New York: Academic Press, 2010.
    [10] 廖延彪, 金慧明. 光纤光学[M]. 北京: 清华大学出版社, 1992.

    Liao Yanbiao, Jin Huiming. Fiber optics. Beijing: Tsinghua University Press, 1992
    [11] 黄良金. 大功率光纤激光器的模式分解及模式控制[D]. 长沙: 国防科学技术大学, 2016.

    Huang Liangjin. Mode decomposition and mode control of high-power fiber lasers. Changsha: National University of Defense Technology, 2016
    [12] Yoda H, Polynkin P, Mansuripur M. Beam quality factor of higher order modes in a step-index fiber[J]. Journal of Lightwave Technology, 2006, 24(3): 1350-1355.
    [13] Siegman A E. How to (maybe) measure laser beam quality[C]//Diode Pumped Solid State Lasers: Applications and Issues. 1998: MQ1.
    [14] Siegman A E. Defining and measuring laser beam quality[M]//Solid State Lasers. 1993: 13-28.
    [15] Zhou Pu, Liu Zejin, Xu Xiaojun, et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Applied Optics, 2008, 47(18): 3350-3359.
    [16] Zhou Pu, Liu Zejin, Xu Xiaojun, et al. Beam quality factor for coherently combined fiber laser beams[J]. Optics & Laser Technology, 2009, 41(3): 268-271.
    [17] Yan Ping, Wang Xuejiao, Gong Mali, et al. Evaluating the beam quality of double-cladding fiber lasers in applications[J]. Applied Optics, 2016, 55(23): 6145-6150. doi: 10.1364/AO.55.006145
    [18] Wielandy S. Implications of higher-order mode content in large mode area fibers with good beam quality[J]. Optics Express, 2007, 15(23): 15402-15409. doi: 10.1364/OE.15.015402
    [19] Tao Rumao, Huang Long, Zhou Pu, et al. Propagation of high-power fiber laser with high-order-mode content[J]. Photonics Research, 2015, 3(4): 192-199.
    [20] 冯国英, 周寿桓, 高春清. 激光模场及光束质量表征[M]. 北京: 国防工业出版社, 2016.

    Feng Guoying, Zhou Shouhuan, Gao Chunqing. Laser mode field and beam quality characterization. Beijing: National Defense Industry Press, 2016
    [21] Nicholson J W, Yablon A D, Ramachandran S, et al. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers[J]. Optics Express, 2008, 16(10): 11.
    [22] 胡丽荔, 冯国英, 董哲良. 基于空间和频谱分辨的光纤模式测量方法[J]. 红外与激光工程, 2015, 44(8): 2517-2522. doi: 10.3969/j.issn.1007-2276.2015.08.047

    Hu Lili, Feng Guoying, Dong Zheliang. Spatially and spectrally resolved fiber mode measurement method. Infrared and Laser Engineering, 2015, 44(8): 2517-2522 doi: 10.3969/j.issn.1007-2276.2015.08.047
    [23] Schimpf D N, Barankov R A, Ramachandran S. Cross-correlated (C2) imaging of fiber and waveguide modes[J]. Optics Express, 2011, 19(14): 13008-13019.
    [24] Demas J, Ramachandran S. Sub-second mode measurement of fibers using C2 imaging[J]. Optics Express, 2014, 22(19): 23043-23056.
    [25] Schmidt O A, Schulze C, Flamm D, et al. Real-time determination of laser beam quality by modal decomposition[J]. Optics Express, 2011, 19(7): 6741-6748.
    [26] Paurisse M, Lévèque L, Hanna M, et al. Complete measurement of fiber modal content by wavefront analysis[J]. Optics Express, 2012, 20(4): 4074-4084.
    [27] Brüning R, Gelszinnis P, Schulze C, et al. Comparative analysis of numerical methods for the mode analysis of laser beams[J]. Applied Optics, 2013, 52(32): 7769-7777.
    [28] Flamm D, Naidoo D, Schulze C, et al. Mode analysis with a spatial light modulator as a correlation filter[J]. Optics Letters, 2012, 37(13): 2478-2480.
    [29] Lü Haibin, Zhou Pu, Wang Xiaolin, et al. Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm[J]. Applied Optics, 2013, 52(12): 2905-2908.
    [30] Huang Liangjin, Guo Shaofeng, Leng Jinyong, et al. Real-time mode decomposition for few-mode fiber based on numerical method[J]. Optics Express, 2015, 23(4): 4620-4629.
    [31] Huang Liangjin, Lü Haibin, Zhou Pu, et al. Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm[J]. Photonics Technology Letters, 2015, 27(21): 2280-2283.
    [32] Andermahr N, Theeg T, Fallnich C. Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers[J]. Applied Physics B, 2008, 91(2): 353-357.
    [33] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.
    [34] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.
    [35] Hansen K R, Alkeskjold T T, Broeng J, et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letter, 2012, 37(12): 2382-2384.
    [36] Jauregui C, Eidam T, Otto H-J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925.
    [37] Dong Liang. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 2013, 21(3): 2642-2656.
    [38] Hu I-Ning, Zhu Cheng, Zhang Chao, et al. Analytical time-dependent theory of thermally-induced modal instabilities in high power fiber amplifiers[C]//Proc of SPIE. 2013: 860109.
    [39] Zervas M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J]. Int J Mod Phys B, 2014, 28(12): 1442009.
    [40] Russell P S t J, Culverhouse D, Farahi F. Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers[J]. IEEE J Quantum Electron, 1991, 27(3): 836-842.
    [41] Russell P St J, Culverhouse D, Farahi F. Experimental observation of FSBS in dual-mode single-core fibre[J]. Electron Lett, 1990, 26(15): 1195-1196.
    [42] Kuznetsov M, Vershinin O, Tyrtyshnyy V, et al. Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers[J]. Opt Express, 2014, 22(24): 29714-29725.
    [43] 陶汝茂. 高功率窄线宽近衍射极限光纤激光放大器热致模式不稳定研究[D]. 长沙: 国防科学技术大学研究生院, 2015.

    Tao Rumao. Study of thermal-induced modal instabilities in high power narrow-linewidth fiber amplifiers with near diffraction-limited beam quality. Changsha: National University of Defense Technology, 2015
    [44] 陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201402001.htm

    Tao Rumao, Zhou Pu, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers. Laser & Optoelectronics Progress, 2014, 51(2): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201402001.htm
    [45] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 2015, 3(3): 86-93.
    [46] Jansen F, Stutzki F, Otto H J, et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 2012, 20(4): 3997-4008.
    [47] Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation[J]. Optics Express, 2013, 21(13): 15168-15182
    [48] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Physics Letter, 2015, 12: 085101.
    [49] Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium doped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020.
    [50] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of dopant concentrations on thermally induced mode instability in high-power fiber amplifiers[J]. Laser Physics, 2016, 26: 065103.
    [51] 陶汝茂, 王小林, 肖虎, 等. 高功率光纤放大器中模式不稳定阈值功率的理论研究[J]. 光学学报, 2014, 34: 114002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201401021.htm

    Tao Rumao, Wang Xiaolin, Xiao Hu, et al. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers. Acta Optica Sinica, 2014, 34: 114002 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201401021.htm
    [52] Eidam T, Hädrich S, Jansen F, et al. Preferential gain photonic-crystal fiber for mode stabilization at high average powers[J]. Optics Express, 2011, 19(9): 8656-8661.
    [53] Engin D, Lu W, Verdun H, et al. High power modal instability measurements of very large mode area (VLMA) step index fibers[C]//Proc of SPIE. 2013: 87330J.
    [54] Naderi S, Dajani I, Madden T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Optics Express, 2013, 21(13): 16111-16129.
    [55] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]//Proc of SPIE. 2013: 860108.
    [56] Laurila M, Jørgensen M M, Hansen K R, et al. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability[J]. Optics Express, 2012, 20(5): 5742-5753.
    [57] Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Optics Express, 2013, 21(19): 21847-21856.
    [58] Otto H-J, Modsching N, Jauregui C, et al. Impact of photo darkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277.
    [59] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 2016, 18: 065501.
    [60] Goodno G D, McNaught S, Thielen P, et al. Polarization control with mode stability: US8922877B1[P]. 2014-12-30.
    [61] Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Optics Express, 2012, 20(22): 24545-24558.
    [62] Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971.
    [63] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nat Photon, 2012, 7: 861-867.
    [64] Ballato J, Dragic P. Materials development for next generation optical fiber[J]. Materials, 2014, 7(6): 4411-4430.
    [65] Shaw L B, Askins C, Kim W, et al. Cladding pumped single crystal Yb: YAG fiber amplifier[C]//Advanced Solid State Laser, 2015: AM4A. 4.
    [66] Tao Rumao, Wang Xiaolin, Zhou Pu, et al. Seed power dependence of mode instabilities in high power fiber amplifiers[J]. Journal of Optics, 2017, 19: 065202.
    [67] Otto H-J, Jauregui C, Stutzki F, et al. Dependence of mode instabilities on the extracted power of fiber laser systems[C]//Advanced Solid State Laser, 2013: ATu3A. 02.
    [68] Haarlammert N, Sattler B, Liem A, et al. Optimizing mode instability in low-NA fibers by passive strategies[J]. Optics Letter, 2015, 40(10): 2317-2320.
    [69] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 2015, 51(8): 1-6.
    [70] Otto H-J, Modsching N, Jauregui C, et al. Wavelength dependence of maximal diffraction-limited output power of fiber lasers[C]//Proc of SPIE. 2015: 93441Y.
    [71] Brar K, Leuchs M S, Henric J, et al. Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers[C]//Proc of SPIE. 2014: 89611R.
    [72] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth[C]//Proc of SPIE. 2015: 972807.
    [73] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Optics Express, 2013, 21(3): 2606-2623.
    [74] Smith J J, Smith A V. Influence of signal bandwidth on mode instability thresholds of fiber amplifiers[C]//Proc of SPIE. 2015: 93440L.
    [75] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17: 045504.
    [76] Tao R, Ma P, Wang X, et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 2017, 14: 025002.
    [77] Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultra-high brightness pumps[C]//Proc of SPIE. 2015: 972806.
    [78] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. 1.4 kW all-fiber narrow-linewidth polarization-maintained fiber amplifier[C]//Proc of SPIE. 2014: 92550B.
    [79] Lei Min, Qi Yunfeng, Liu Chi, et al. Mode controlling study on narrow-linewidth and high power all-fiber amplifier[C]//Proc of SPIE. 2015: 95431L.
    [80] 雷敏, 漆云凤, 刘驰, 等. 高功率全光纤放大器的高阶模激发阈值特性研究[J]. 中国激光, 2015, 42: 0605002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201506023.htm

    Lei Min, Qi Yunfeng, Liu Chi, et al. High-order modes threshold study on high power all-fiber amplifier. Chinese Journal of Lasers, 2015, 42: 0605002 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201506023.htm
    [81] Ma Pengfei, Tao Rumao, Su Rongtao, et al. 1.89 kW all-fiberized and polarization-maintained fiber amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.
    [82] 陶汝茂, 周朴, 王小林, 等. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究[J]. 物理学报, 2014, 63: 085202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201408036.htm

    Tao Rumao, Zhou Pu, Wang Xiaolin, et al. Experimental study on mode instability in high power all-fiber master oscillator power amplifier fiber lasers. Acta Physica Sinica, 2014, 63: 085202 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201408036.htm
    [83] Tao Rumao, Su Rongtao, Ma Pengfei, et al. Suppressing mode instabilities by optimizing the fiber coiling methods[J]. Laser Physics Letter, 2017, 14: 025101.
    [84] Robin C, Dajani I, Zeringue C, et al. Gain-tailored SBS suppressing photonic crystal fibers for high power applications[C]//Proc of SPIE. 2012: 82371D.
    [85] Liu C H, Chang G, Litchinitser N, et al. Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling[C]//Proc CLEO/QELS 2007. CTuBB3.
    [86] Kanskar M, Zhang J, McComb T S, et al. Traverse-modal-instability (TMI)-free Yb-doped 35 μm core and 250 μm clad chirally coupled core (3C) fiber MOPA with 475 W output power[C]//Laser Technology for Defense and Security XⅡ. 2016.
    [87] Dong L, Saitoh K, Kong F, et al. All-solid photonic bandgap fibers for high power lasers[C]//Proc of SPIE. 2012: 85470J, .
    [88] Kong F, Gu G, Hawkins T, et al. ~1 kilowatt ytterbium-doped all-solid photonic bandgap fiber laser[C]//Proc of SPIE. 2017: 1008311.
    [89] Filippov V, Ustimchik V, Chamorovskii Yu, et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]//European Conference on Laser and Electro-Optics and the European Quantum Electronics Conference. 2015.
    [90] Eznaveh Z S, Lopez-Galmiche G, Antonio-Lopez E, et al. Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers[C]//Proc of SPIE. 2015: 93442G.
    [91] Stihler C, Jauregui C, Otto H J, et al. Controlling mode instabilities at 628 W average output power in an Yb-doped rod-type fiber amplifier by active modulation of the pump power[C]//Proc of SPIE. 2017: 100830P.
    [92] Liu Wei, Ma Pengfei, Lü Haibin, et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 2016, 24(23): 26715-26721.
    [93] Xiao Hu, Zhou Pu, Wang Xiaolin, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1088-1090.
    [94] Xiao Hu, Zhou Pu, Wang Xiaolin, et al. High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier[J]. Laser Physics Letters, 2012, 9(10): 748.
    [95] Huang Y, Edgecumbe J, Ding J, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths: 1028~1100 nm[C]//Proc of SPIE. 2014: 89612K.
    [96] 于海龙, 王小林, 张汉伟, 等. 300 W线偏振飞秒全光纤啁啾脉冲放大系[J]. 强激光与粒子束, 2016, 28: 050101. doi: 10.11884/HPLPB201628.050101

    Yu Hailong, Wang Xiaolin, Zhang Hanwei, et al. 300 W linearly polarized femtosecond all-fiber chirped pulse amplification system. High Power Laser and Particle Beams, 2016, 28: 050101 doi: 10.11884/HPLPB201628.050101
    [97] Bobkov K K, Bubnov M M, Aleshkina S S, et al. Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers[J]. Laser Physics Letter, 2017, 14: 015102.
    [98] Ward B, Theory and modeling of photodarkeninginduced quasi static degradation in fiber amplifiers[J]. Optics Express, 2016, 24(4): 3488-3501.
    [99] 史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44: 0201004. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702005.htm

    Shi Chen, Tao Rumao, Wang Xiaolin, et al. New progress and phenomena of modal instability in fiber lasers. Chinese Journal of Lasers, 2017, 44: 0201004 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702005.htm
    [100] Alvarez-Chavez J A, Grudinin A B, Nilsson J, et al. Mode selection in high power cladding pumped fibre lasers with tapered section[C]//Conference on Lasers and Electro-Optics. 1999: 247-248.
    [101] Li Libo, Lou Qihong, Zhou Jun, et al. High power single transverse mode operation of a tapered large-mode-area fiber laser[J]. Optics Communications, 2008, 281(4): 655-657.
    [102] 张汉伟, 周朴, 王小林, 等. 双包层光纤光学放电现象的建模仿真分析[J]. 光学学报, 2013, 33: 706015. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201307018.htm

    Zhang Hanwei, Zhou Pu, Wang Xiaolin, et al. Simulation of fiber optical discharge effect of double cladding fiber. Acta Optica Sinica, 2013, 33: 0706015 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201307018.htm
    [103] Zhang Hanwei, Zhou Pu, Wang Xiaolin, et al. Fiber fuse effect in high-power double-clad fiber laser[C]//Conference on Lasers and Electro-Optics. 2013: WPD_4.
    [104] 史尘, 王小林, 粟荣涛, 等. 长拉锥双包层光纤在光纤激光领域的应用研究进展[J]. 激光与光电子学进展, 2015, 52(12): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201512001.htm

    Shi Chen, Wang Xiaolin, Su Rongtao, et al. Progress of study on long tapered double-clad fiber in fiber laser application. Laser & Optoelectronics Progress, 2015, 52(12): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201512001.htm
    [105] Koplow J P, Kliner D A V, Goldberg L. Single-mode operation of a coiled multimode fiber amplifier[J]. Optics Letters, 2000, 25(7): 442-444.
    [106] Schermer R T, Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment[J]. IEEE Journal of Quantum Electronics, 2007, 43(10): 11.
    [107] Marcuse D. Influence of curvature on the losses of doubly clad fibers[J]. Applied Optics, 1982, 21(23): 4208-4213.
    [108] Li Mingjun, Chen Xin, Liu Anping, et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers[J]. Journal of Lightwave Technology, 2009, 27(15): 3010-3016.
    [109] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.
    [110] Huang Liangjin, Wang Wenliang, Leng Jinyong, et al. Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier[J]. IEEE Photonics Technology Letters, 2014, 26(1): 33-36.
    [111] Xu Jiangming, Liu Wei, Leng Jinyong, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 2015, 40(13): 2973-2976.
    [112] Walorny M, Abramczyk J, Jacobson N, et al. Mechanical reliability of double clad fibers in typical fiber laser deploy[C]//Proc of SPIE. 2016: 97283A.
    [113] Petit V, Tumminelli R P, Minelly J D, et al. Extremely low NA Yb doped preforms (< 0.03) fabricated by MCVD[C]//Proc of SPIE. 2016: 97282R.
    [114] Kuhn S, Hein S, Hupel C, et al. Towards monolithic single-mode Yb-doped fiber amplifiers with > 4 kW average power[C]//Advanced Solid State Laser. 2016: ATu4A. 2.
    [115] Jain D, Jung Y, Barua P S, et al. Demonstration of ultra-low Na rare-earth doped step index fiber for applications in high power fiber lasers[J]. Optics Express, 2015, 23(6): 7407-7415.
    [116] Xu Wenbin, Lin Zhiquan, Wang Meng, et al. 50 μm core diameter Yb3+/Al3+/F- codoped silica fiber with M2 < 1.1 beam quality[J]. Optics Letters, 2016, 41(3): 504-507.
    [117] Hupel C, Kuhn S, Hein S, et al. MCVD based fabrication of low-NA fibers for high power fiber laser application[C]//Advanced Solid State Laser. 2015: AM4A. 2.
    [118] Beier F, Hupel C, Kuhn S, et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Opt Express, 2017, 25: 14892-14899.
    [119] Jain D, Jung Y, Nunez-Velazquez M, et al. Extending single mode performance of all-solid large-mode-area single trench fiber[J]. Optics Express, 2014, 22(25): 31078-31091.
    [120] Jain D, Alam S, Codemard C, et al. High power, compact, picosecond MOPA based on single trench fiber with single polarized diffraction-limited output[J]. Optics Letters, 2015, 40(17): 4150-4153.
    [121] Söderlund M J, Ponsoda M J J, Tammela S K T, et al. Mode-induced transverse photodarkening loss variations in large-mode-area ytterbium doped silica fibers[J]. Opt Express, 2008, 16(14): 10633-10640.
    [122] Marciante J R. Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 30-36.
    [123] Marciante J R, Roides R G, Shkunov V V, et al. Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering[J]. Optics Letters, 2010, 35(11): 1828-1830.
    [124] Ye C, Koponen J, Kokki T, et al. Confined-doped ytterbium fibers for beam quality improvement: fabrication and performance[C]//SPIE LASE. 2012: 823737.
    [125] Fini J M. Bend distortion in large-mode-area amplifier fiber design[C]//Proc of SPIE. 2007: 67810E.
    [126] Ma Xiuquan, Liu Chi-Hung, Chang Guoqing, et al. Angular-momentum coupled optical waves in chirally-coupled-core fibers[J]. Optics Express, 2011, 19(27): 26515-26528.
    [127] Ma Xiuquan, Zhu Cheng, Hu I-Ning, et al. Single-mode chirally-coupled-core fibers with larger than 50μm diameter cores[J]. Optics Express, 2014, 22(8): 9206-9219.
    [128] Dong L, McKay H A, Marcinkevicius A, et al. Extending effective area of fundamental mode in optical fibers[J]. Journal of Lightwave Technology, 2009, 27(11): 1565-1570.
    [129] Dong Liang, Peng Xiang, Li Jun. Leakage channel optical fibers with large effective area[J]. Journal of the Optical Society of America B, 2007, 24(8): 1689-1697.
    [130] Wong W S, Peng X, McLaughlin J M, et al. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Optics Letters, 2005, 30(21): 2855-2857.
    [131] Dong L, McKay H A, Fu L, et al. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding[J]. Optics Express, 2009, 17(11): 8962-8969.
    [132] Limpert J, Stutzki F, Jansen F, et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation[J]. Light: Science & Applications, 2012, 1: e8.
    [133] Stutzki F, Jansen F, Otto H-J, et al. Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems[J]. Optica, 2014, 1(4): 233-242.
    [134] Jain D, Baskiotis C, May-Smith T C, et al. Large mode area multi-trench fiber with delocalization of higher order modes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 242-250.
    [135] Jain D, Jung Y, Kim J, et al. Robust Single-mode all-solid multi-trench fiber with large effective mode area[J]. Optics Letters, 2014, 39(17): 5200-5203.
    [136] Fridman M, Machavariani G, Davidson N, et al. Fiber lasers generating radially and azimuthally polarized light[J]. Applied Physics Letters, 2008, 93: 191104.
    [137] Zou Lin, Yao Yao, Li Jianlang. High-power, efficient and azimuthally polarized ytterbium-doped fiber laser[J]. Optics Letters, 2015, 40(2): 229-232.
    [138] Lin D, Daniel J M, Gecevičius M, et al. Cladding-pumped ytterbium-doped fiber laser with radially polarized output[J]. Optics Letters, 2014, 39(18): 5359-5361.
    [139] Lin D, Clarkson W A. Polarization-dependent transverse mode selection in an Yb-doped fiber laser[J]. Optics Letters, 2015, 40(4): 498-501.
    [140] Liu Tong, Chen Shengping, Qi Xue, et al. High-power transverse-mode-switchable all-fiber picosecond MOPA[J]. Optics Express, 2016, 24(24): 27821-27827.
    [141] Tanaka Y, Okida M, Miyamoto K, et al. High power picosecond vortex laser based on a large-mode-area fiber amplifier[J]. Optics Express, 2009, 17(16): 14362-14366.
    [142] Koyama M, Hirose T, Okida M, et al. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier[J]. Optics Express, 2011, 19(2): 994-999.
    [143] Kanazawa S, Kozawa Y, Sato S. High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber[J]. Optics Letters, 2014, 39(10): 2857-2859.
    [144] Kim D J, Kim J W, Clarkson W A. High-power master-oscillator power-amplifier with optical vortex output[J]. Applied Physics B, 2014, 117(1): 459-464.
    [145] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes[J]. Nat Commun, 2013, 4: 2289.
    [146] Huang Liangjin, Leng Jinyong, Zhou Pu, et al. Adaptive mode control of a few-mode fiber by real-time mode decomposition[J]. Optics Express, 2015, 23(21): 28082-28090.
    [147] Tian Chenghui, Yu Song, Cai Shanyong, et al. Fiber laser for on-demand mode generation in 1550 nm band[J]. Photonics Research, 2017, 5(3) : 256.
    [148] Zhou Xuanfeng, Chen Zilun, Wang Zefeng, et al. Monolithic fiber end cap collimator for high power free-space fiber-fiber coupling[J]. Applied Optics, 2016, 55(15): 4001-4003.
    [149] Zhi Dong, Ma Yanxing, Chen Zilun, et al. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality[J]. Optics Letters, 2016, 41(10): 2217-2220.
    [150] Tao Rumao, Si Lei, Ma Yanxing, et al. Optical quality of high-power fiber laser beams propagating through collimating systems[J]. Acta Physica Sinica, 2011, 60: 104208.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1388
  • HTML全文浏览量:  347
  • PDF下载量:  803
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-25
  • 修回日期:  2018-04-17
  • 刊出日期:  2018-06-15

目录

    /

    返回文章
    返回