留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种波束扫描超材料天线的设计

马宇 章海锋 刘婷 李文煜

马宇, 章海锋, 刘婷, 等. 一种波束扫描超材料天线的设计[J]. 强激光与粒子束, 2018, 30: 103206. doi: 10.11884/HPLPB201830.180088
引用本文: 马宇, 章海锋, 刘婷, 等. 一种波束扫描超材料天线的设计[J]. 强激光与粒子束, 2018, 30: 103206. doi: 10.11884/HPLPB201830.180088
Ma Yu, Zhang Haifeng, Liu Ting, et al. Design of beam scanning metamaterial antenna[J]. High Power Laser and Particle Beams, 2018, 30: 103206. doi: 10.11884/HPLPB201830.180088
Citation: Ma Yu, Zhang Haifeng, Liu Ting, et al. Design of beam scanning metamaterial antenna[J]. High Power Laser and Particle Beams, 2018, 30: 103206. doi: 10.11884/HPLPB201830.180088

一种波束扫描超材料天线的设计

doi: 10.11884/HPLPB201830.180088
基金项目: 

中国博士后特优 2016T90455

中国博士后面上项目 2015M581790

江苏省博士后面上项目 1501016A

详细信息
    作者简介:

    马宇(1995—), 男,硕士研究生,从事平面反射阵列天线的研究,电磁超材料,周期性介质结构的电磁特性的研究; 892213451@qq.com

    通讯作者:

    章海锋(1978—), 男,教授,现主要从事超材料吸波器、平面反射阵列天线,计算物理,电磁超材料,周期性介质结构的电磁特性的研究; hanlor@163.com

  • 中图分类号: TN92

Design of beam scanning metamaterial antenna

  • 摘要: 设计了一种结合正方形和八边形环的波束扫描超材料平面反射阵列天线。相比于传统的阵列天线设计,运用了新的相位补偿方法,即通过组合反射阵列单元在介质基板的材料不同时得到的相位曲线实现0~360°的相位补偿,使得阵列单元的相位曲线不需要完全覆盖0~360°,并且采用埃尔米特插值的方式解决相位特性曲线线性度差的问题。该方法的优势是具有广泛适应性,降低了对阵列单元的设计要求。利用这种方法设计了几款单层平面反射阵列天线,仿真结果显示反射波束方向与预期设定值相符合,且副瓣与主瓣都相差至少15 dB。通过调节超材料固态等离子体激励区域的范围即改变阵列单元的谐振结构,实现了空间波束扫描,为平面反射阵列天线的设计提供了一种新思路。
  • 图  1  单元结构示意图

    Figure  1.  Schematic diagrams of the array element

    图  2  相位特性曲线图

    Figure  2.  Phase characteristic graphs

    图  3  不同d值下的相位特性曲线图

    Figure  3.  Phase characteristic graphs at different values of d

    图  4  反射波束在15°汇聚时,使用插值技术后贴片单元尺寸的坐标分布与阵列单元相位特性曲线的对比图

    Figure  4.  When the reflected beam is converged at 15°, the comparison between the coordinate distribution of the patch cell size and the phase characteristic curve of the array cell after using the interpolation technique

    图  5  阵列单元的尺寸分布图

    Figure  5.  Size distributions of array antenna elements

    图  6  不同角度下反射波束的方向图

    Figure  6.  Radiation patterns of the reflected beams for different angles

    图  7  不同频率下反射波束的方向图

    Figure  7.  Radiation patterns of the reflected beams at different frequencies

  • [1] 赵建森, 孙洋, 倪雨薇, 等. 等离子体天线开启时间光电时差测量法[J]. 强激光与粒子束, 2017, 29: 052001. doi: 10.11884/HPLPB201729.170042

    Zhao Jiansen, Sun Yang, Ni Yuwei, et al. Light-electricity method for measuring switch-on time of plasma antennas. High Power Laser and Particle Beams, 2017, 29: 052001 doi: 10.11884/HPLPB201729.170042
    [2] 张励维, 龚瑞昆, 王晓磊, 等. 粒径对激光诱导煤粉流等离子体特性的影响[J]. 激光技术, 2017, 41(3): 438-441. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201703026.htm

    Zhang Liwei, Gong Ruikun, Wang Xiaolei, et al. Influence of particle size on plasma characters of laser-induced pulverized coal flow. Laser Technology, 2017, 41(3): 438-441 https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201703026.htm
    [3] 端木刚. 等离子体天线的辐射特性仿真与实现[D]. 北京: 北京理工大学, 2015.

    Duanmu Gang. Simulation and realization of radiation property of plasma antenna. Beijing: Beijing Institute of Technology, 2015
    [4] 余志洋. 固态等离子体重构天线设计与实现[D]. 南京: 南京航空航天大学, 2016.

    Yu Zhiyang. Design and implementation of the reconfigurable solid state plasma antennas. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
    [5] 伍裕江, 聂在平, 乐铁军. 基于极化可重构天线的天线选择方案[J]. 电子学报, 2007, 35(12): 2252-2257. doi: 10.3321/j.issn:0372-2112.2007.12.003

    Wu Yujiang, Nie Zaiping, Le Tiejun. Antenna selection scheme based on polarization reconfigurable antenna. Chinese Journal of Electronics, 2007, 35(12): 2252-2257 doi: 10.3321/j.issn:0372-2112.2007.12.003
    [6] 郑春容. 方向图可重构天线及其阵列研究[D]. 成都: 电子科技大学, 2015.

    Zheng Chunrong. Research on pattern reconfigurable antenna and array. Chengdu: University of Electronic Science and Technology of China, 2015
    [7] 李龙军, 王布宏, 夏春和. 稀疏共形阵列天线方向图综合[J]. 电子学报, 2017, 45(1): 104-111. doi: 10.3969/j.issn.0372-2112.2017.01.015

    Li Longjun, Wang Buhong, Xia Chunhe. Synthesis of sparse conformal array antennas pattern. Chinese Journal of Electronics, 2017, 45(1): 104-111 doi: 10.3969/j.issn.0372-2112.2017.01.015
    [8] 王明阳, 袁成卫, 张强. 铁电体移相器高功率微波应用研究[J]. 强激光与粒子束, 2016, 28: 033012. doi: 10.11884/HPLPB201628.033012

    Wang Mingyang, Yuan Chengwei, Zhang Qiang. Ferroelectric phase shifter for high-power microwave application. High Power Laser and Particle Beams, 2016, 28: 033012 doi: 10.11884/HPLPB201628.033012
    [9] 张健丰, 李平辉, 朱彤. 高隔离度宽带双极化微带天线设计[J]. 电子学报, 2016, 44(4): 775-779. doi: 10.3969/j.issn.0372-2112.2016.04.004

    Zhang Jianfeng, Li Pinghui, Zhu Tong. Design of wideband dual-polarized microstrip antenna with high isolation. Chinese Journal of Electronics, 2016, 44(4): 775-779 doi: 10.3969/j.issn.0372-2112.2016.04.004
    [10] 曾晓勇, 胡仲霞, 陈倩, 等. 同轴共线阵列天线低副瓣设计[J]. 强激光与粒子束, 2017, 29: 093001. doi: 10.11884/HPLPB201729.170075

    Zeng Xiaoyong, Hu Zhongxia, Cheng Qian, et al. Design of a coaxial collinear array antenna with low sidelobe. High Power Laser and Particle Beams, 2017, 29: 093001 doi: 10.11884/HPLPB201729.170075
    [11] 项阳, 钱祖平, 施伟, 等. 一种基于负折射电路的宽带圆极化微带天线[J]. 电子学报, 2009, 37(12): 2668-2671. doi: 10.3321/j.issn:0372-2112.2009.12.011

    Xiang Yang, Qian Zuping, Shi Wei, et al. A novel broadband circularly polarization microstrip antenna based on negative refraction circuit. Chinese Journal of Electronics, 2009, 37(12): 2668-2671 doi: 10.3321/j.issn:0372-2112.2009.12.011
    [12] 李雪慧. 新型圆极化天线技术研究[D]. 西安: 西安电子科技大学, 2014.

    Li Xuehui. On the novel technology for circularly polarized antenna. Xi'an: Xidian University, 2014
    [13] 刘会来. 阵列反射天线的研究[D]. 成都: 电子科技大学, 2006.

    Liu Huilai. Research on array reflective antennas. Chengdu: University of Electronic Science and Technology of China, 2006
    [14] 杨一明, 袁成卫, 钱宝良. 波导缝隙阵列天线高功率微波应用探索[J]. 强激光与粒子束, 2013, 25(10): 2648-2652. doi: 10.3788/HPLPB20132510.2648

    Yang Yiming, Yuan Chengwei, Qian Baoliang. Beam steering antenna for high power microwave application. High Power Laser and Particle Beams, 2013, 25(10): 2648-2652 doi: 10.3788/HPLPB20132510.2648
    [15] Guo Yidong, Liu Xiaoming, Zhu Zhonggan. Study of MEMS-based high-resistance silicon K-band planar array microstrip antenna[C]//IEEE Microelectronics and Electronics. 2010: 368-371.
    [16] Hum S V, Okoniewski M, Davies R J. Realizing an electronically tunable reflectarray using varactor diode-tuned elements[J]. IEEE Microwave & Wireless Components Letters, 2004, 15(6): 422-424.
    [17] 邓作, 李浩, 姜利辉, 等. 宽带W波段Flaps天线仿真与设计[J]. 强激光与粒子束, 2014, 26: 063011. doi: 10.11884/HPLPB201426.063011

    Deng Zuo, Li Hao, Jiang Lihui, et al. Simulation and design of broadband W-band flaps antenna. High Power Laser and Particle Beams, 2014, 26: 063011 doi: 10.11884/HPLPB201426.063011
    [18] 陈虎, 郑雪飞, 李小秋. 一种微带反射阵列天线单元特性研究[J]. 微波学报, 2010, 26(s1): 145-148. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2010S1044.htm

    Chen Hu, Zheng Xuefei, Li Xiaoqiu. Performance analysis of a microstrip reflectarray element. Journal of Microwaves, 2010, 26(s1): 145-148 https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2010S1044.htm
    [19] 余剑锋. 相移表面阵列天线的理论设计与优化[D]. 西安: 西安电子科技大学, 2016.

    Yu Jianfeng. Theoretical design and optimization of phase-shifting-surface array antennas. Xi'an: Xidian University, 2016
    [20] Encinar J A. Design of two-layer printed reflectarrays using patches of variable size[J]. IEEE Trans Antennas and Propagation, 2001, 49(10): 1403-1410. doi: 10.1109/8.954929
    [21] Kong X K, Li H M, Bian B R, et al. Microwave tunneling in heterostructures with electromagnetically induced transparency-like metamaterials based on solid state plasma[J]. The European Physical Journal Applied Physics, 2016, 74: 030801. doi: 10.1051/epjap/2016150452
    [22] Kong X K, Mo J J, Yu Z Y, et al. Reconfigurable designs for electromagnetically induced transparency in solid state plasma metamaterials with multiple transmission windows[J]. International Journal of Modern Physics B, 2016, 30: 1650070. doi: 10.1142/S0217979216500703
  • 加载中
图(7)
计量
  • 文章访问数:  1556
  • HTML全文浏览量:  391
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 修回日期:  2018-07-19
  • 刊出日期:  2018-10-15

目录

    /

    返回文章
    返回