留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短超强激光实验伴生电磁脉冲的模拟研究

张露杭 刘红杰 谷渝秋 曹磊峰 周维民

张露杭, 刘红杰, 谷渝秋, 等. 超短超强激光实验伴生电磁脉冲的模拟研究[J]. 强激光与粒子束, 2018, 30: 083203. doi: 10.11884/HPLPB201830.180101
引用本文: 张露杭, 刘红杰, 谷渝秋, 等. 超短超强激光实验伴生电磁脉冲的模拟研究[J]. 强激光与粒子束, 2018, 30: 083203. doi: 10.11884/HPLPB201830.180101
Zhang Luhang, Liu Hongjie, Gu Yuqiu, et al. Simulation study of ultrashort intense laser experiment associated with electromagnetic pulse[J]. High Power Laser and Particle Beams, 2018, 30: 083203. doi: 10.11884/HPLPB201830.180101
Citation: Zhang Luhang, Liu Hongjie, Gu Yuqiu, et al. Simulation study of ultrashort intense laser experiment associated with electromagnetic pulse[J]. High Power Laser and Particle Beams, 2018, 30: 083203. doi: 10.11884/HPLPB201830.180101

超短超强激光实验伴生电磁脉冲的模拟研究

doi: 10.11884/HPLPB201830.180101
详细信息
    作者简介:

    张露杭(1993-),男,硕士,从事激光驱动电磁脉冲模拟研究;1912411345@qq.com

    通讯作者:

    刘红杰(1975-),男,博士,从事激光聚变研究;buyijie@163.com

  • 中图分类号: O532

Simulation study of ultrashort intense laser experiment associated with electromagnetic pulse

  • 摘要: 靶室腔体谐振产生的电磁辐射是超短超强激光与靶相互作用实验中生成的电磁脉冲(EMP)来源之一。基于有限元分析方法,对靶室腔谐振产生电磁脉冲和电磁脉冲通过窗口向外传播这两个过程进行仿真模拟。前者模拟获得空腔和含结构模型谐振时特征磁场,结果显示内部结构对电磁场强度分布和谐振频率有显著影响;后者模拟结果显示,窗口外侧电场强度比窗口内侧高约40%,而且电磁脉冲传播到靶室外后呈球面波形式扩散并衰减。对电磁脉冲的强度衰减规律进行了分析,得到该衰减曲线的拟合函数。
  • 图  1  柱状空腔和含内部结构靶室模型(单位:m)

    Figure  1.  Columnar cavity (a) and the internal (b) structure target chamber model (unit: m)

    图  2  (a) 模拟模型空腔时磁场分布;(b)腔室内包含棱镜、金属镜架、金属平板、玻璃窗等组件时的磁场分布;白色箭头表示磁场通量

    Figure  2.  (a)Magnetic field of the simulated fundamental model; (b) A distortion of the magnetic field in the target chamber filled by the metal plate, lens, metallic lens holder and window; the arrows indicate the magnetic field flux

    图  3  (a) 柱形模型腔室(内包含棱镜、金属镜架、金属平板、玻璃窗等组件)在194.8 MHz频率处谐振时内部的磁场空间分布;(b)~(d)为顶部和侧面的磁场视图

    Figure  3.  (a)Simulation of the magnetic flux density distribution in the cylindrical target chamber for the resonant frequency of 194.8MHz by inserting the metal plate, lens, metallic lens holder and window.(b)~(d) Top and sides projections of magnetic field inside the target chamber

    图  4  各时刻电磁场强度分布图; 曲线为电场强度的等值线,图(a)显示A, B, C三点的相对位置

    Figure  4.  Simulation of the electromagnetic field intensity distribution; the curve is the contour line, figure (a) shows the relative position of the points A, B, C

    图  5  A, BC三点处电场强度随时间变化曲线

    Figure  5.  The time curve of the intensity of the electromagnetic field at points A, B and C

    图  6  中轴线(y=0)在-0.2 m < x < 0.5 m区域各点峰值电场Emax的分布曲线;拟合曲线1和2

    Figure  6.  Distribution curve of the electric field intensity Emax on axis(y=0); fitting curves Emax1 and Emax2

  • [1] Strickland D, Mourou G A. Compression of amplified chirped optical pulses[J]. Opt Commu, 1985, 56(3): 219-212. doi: 10.1016/0030-4018(85)90120-8
    [2] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Rev Mod Phys, 2006, 78(2): 309-371.
    [3] Dubois J L, Lavaderci F L, Raffestin D, et al. Target charging in short-pulse-laser-plasma experiments[J]. Phys Rev E, 2014, 89: 013102. doi: 10.1103/PhysRevE.89.013102
    [4] Pearlman J S. Charge separation and target voltages in laser-produced plasmas[J]. Applied Physics Letters, 1977, 31(7): 414-417. doi: 10.1063/1.89729
    [5] 杨进文, 易涛, 李廷帅, 等. 激光打靶过程中的电磁脉冲特性[J]. 强激光与粒子束, 2015, 27: 103224. doi: 10.11884/HPLPB201527.103224

    Yang Jinwen, Yi Tao, Li Tingshuai, et al. Electromagnetic pulse characteristic in process of laser shooting. High Power Laser and Particle Beams, 2015, 27: 103224 doi: 10.11884/HPLPB201527.103224
    [6] 杨进文, 杨鸣, 李廷帅, 等. 强激光靶耦合过程中激发的电磁脉冲诊断与分析[J]. 电气技术, 2016, 12: 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS201612014.htm

    Yang Jinwen, Yang Ming, Li Tingshuai, et al. Measurement and analysis of EMP generated from the interaction between laser and target. Electrical Engineering, 2016, 12: 5-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS201612014.htm
    [7] Felber F S. Dipole radio-frequency power from laser plasmas with no dipole moment[J]. App Phys Lett, 2005, 86: 231501. doi: 10.1063/1.1947911
    [8] Pore A, Hulin S, Grandvaux M B, et al. Physics of giant electromagnetic pulse generation in short pulse laser experiments[J]. Phy Rev E, 2015, 91: 043106. doi: 10.1103/PhysRevE.91.043106
    [9] Mead M J, Neely D, Patel P, et al. Electromagnetic pulse generation within a petawatt laser target chamber[J]. Rev Sci Instrum, 2004, 75(10): 4225-4227. doi: 10.1063/1.1787606
    [10] Eder D C, Throop A, Brown C G, et al. Mitigation of electromagnetic pulse(EMP) effects from short-pulse lasers and fusion neutrons[R]. LLNL-TR-411183, 2009.
    [11] Brown C G, Bond E, Clancy T, et al. Assessment and mitigation of electromagnetic pulse(EMP) impacts at short-pulse laser facilities[J]. Journal of Physics, 2010, 244: 032001.
    [12] Marco M D, Krasa J, Cikhardt J, et al. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets[J]. IOP Publishing for Sissa Medialab, 2016, C06004.
    [13] Kim H S. Electromagnetic waves in cavity design, in behaviour of electromagnetic waves in different media and structures[M]. A Akdagli ed InTech, 2011: 77-100.
    [14] Ramo S, Whinnery J R, Van Duzer T, et al. Fields and waves in communication electronics[M]. Wiley: New York, 1965: 541.
    [15] 王茂光. 几何绕射理论[M]. 西安: 西安电子科技大学出版社, 1994: 60-79.

    Wang Maoguang. Geometrical theory of diffraction. Xi'an: Xidian University Press, 1994: 60-79
  • 加载中
图(6)
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  273
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-08
  • 修回日期:  2018-04-24
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回