Simulation study of ultrashort intense laser experiment associated with electromagnetic pulse
-
摘要: 靶室腔体谐振产生的电磁辐射是超短超强激光与靶相互作用实验中生成的电磁脉冲(EMP)来源之一。基于有限元分析方法,对靶室腔谐振产生电磁脉冲和电磁脉冲通过窗口向外传播这两个过程进行仿真模拟。前者模拟获得空腔和含结构模型谐振时特征磁场,结果显示内部结构对电磁场强度分布和谐振频率有显著影响;后者模拟结果显示,窗口外侧电场强度比窗口内侧高约40%,而且电磁脉冲传播到靶室外后呈球面波形式扩散并衰减。对电磁脉冲的强度衰减规律进行了分析,得到该衰减曲线的拟合函数。Abstract: The electromagnetic radiation produced by the resonance of the target chamber is one of the sources of electromagnetic pulse generated in the experiment of ultra-short intense laser and target interaction. Based on the finite element analysis method, we simulated the two processes of the electromagnetic pulse produced by the resonance of cavity and electromagnetic pulse propagating outward through windows. The former results show that the internal structure has a significant influence on the intensity distribution and resonance frequency of the electromagnetic field. The latter simulation results show that the electric field intensity outside the window is about 40% higher than that inside the window, and the electromagnetic pulse propagates to the target outside and then spreads and attenuates in the form of spherical wave form. The intensity attenuation rule is analyzed and the fitting function of the attenuation curve is obtained.
-
图 3 (a) 柱形模型腔室(内包含棱镜、金属镜架、金属平板、玻璃窗等组件)在194.8 MHz频率处谐振时内部的磁场空间分布;(b)~(d)为顶部和侧面的磁场视图
Figure 3. (a)Simulation of the magnetic flux density distribution in the cylindrical target chamber for the resonant frequency of 194.8MHz by inserting the metal plate, lens, metallic lens holder and window.(b)~(d) Top and sides projections of magnetic field inside the target chamber
-
[1] Strickland D, Mourou G A. Compression of amplified chirped optical pulses[J]. Opt Commu, 1985, 56(3): 219-212. doi: 10.1016/0030-4018(85)90120-8 [2] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Rev Mod Phys, 2006, 78(2): 309-371. [3] Dubois J L, Lavaderci F L, Raffestin D, et al. Target charging in short-pulse-laser-plasma experiments[J]. Phys Rev E, 2014, 89: 013102. doi: 10.1103/PhysRevE.89.013102 [4] Pearlman J S. Charge separation and target voltages in laser-produced plasmas[J]. Applied Physics Letters, 1977, 31(7): 414-417. doi: 10.1063/1.89729 [5] 杨进文, 易涛, 李廷帅, 等. 激光打靶过程中的电磁脉冲特性[J]. 强激光与粒子束, 2015, 27: 103224. doi: 10.11884/HPLPB201527.103224Yang Jinwen, Yi Tao, Li Tingshuai, et al. Electromagnetic pulse characteristic in process of laser shooting. High Power Laser and Particle Beams, 2015, 27: 103224 doi: 10.11884/HPLPB201527.103224 [6] 杨进文, 杨鸣, 李廷帅, 等. 强激光靶耦合过程中激发的电磁脉冲诊断与分析[J]. 电气技术, 2016, 12: 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS201612014.htmYang Jinwen, Yang Ming, Li Tingshuai, et al. Measurement and analysis of EMP generated from the interaction between laser and target. Electrical Engineering, 2016, 12: 5-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS201612014.htm [7] Felber F S. Dipole radio-frequency power from laser plasmas with no dipole moment[J]. App Phys Lett, 2005, 86: 231501. doi: 10.1063/1.1947911 [8] Pore A, Hulin S, Grandvaux M B, et al. Physics of giant electromagnetic pulse generation in short pulse laser experiments[J]. Phy Rev E, 2015, 91: 043106. doi: 10.1103/PhysRevE.91.043106 [9] Mead M J, Neely D, Patel P, et al. Electromagnetic pulse generation within a petawatt laser target chamber[J]. Rev Sci Instrum, 2004, 75(10): 4225-4227. doi: 10.1063/1.1787606 [10] Eder D C, Throop A, Brown C G, et al. Mitigation of electromagnetic pulse(EMP) effects from short-pulse lasers and fusion neutrons[R]. LLNL-TR-411183, 2009. [11] Brown C G, Bond E, Clancy T, et al. Assessment and mitigation of electromagnetic pulse(EMP) impacts at short-pulse laser facilities[J]. Journal of Physics, 2010, 244: 032001. [12] Marco M D, Krasa J, Cikhardt J, et al. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets[J]. IOP Publishing for Sissa Medialab, 2016, C06004. [13] Kim H S. Electromagnetic waves in cavity design, in behaviour of electromagnetic waves in different media and structures[M]. A Akdagli ed InTech, 2011: 77-100. [14] Ramo S, Whinnery J R, Van Duzer T, et al. Fields and waves in communication electronics[M]. Wiley: New York, 1965: 541. [15] 王茂光. 几何绕射理论[M]. 西安: 西安电子科技大学出版社, 1994: 60-79.Wang Maoguang. Geometrical theory of diffraction. Xi'an: Xidian University Press, 1994: 60-79 期刊类型引用(8)
1. 郑伟伟,马世榜. 利用激光-电磁超声检测钛钢复合板脱粘. 应用激光. 2022(05): 102-108 . 百度学术
2. 郑伟伟,马世榜. 基于横波衍射法应用激光-电磁超声检测内部缺陷. 激光与红外. 2022(11): 1622-1628 . 百度学术
3. 宋艳,马世榜. 利用激光超声纵波的衍射信号测量开口裂纹. 激光与红外. 2021(01): 9-14 . 百度学术
4. 宋艳,马世榜,张开飞. 热弹激光超声激励及缺陷检测的有限元分析. 激光技术. 2021(02): 246-251 . 百度学术
5. 王玉庆,王云霞,马世榜. 基于衍射横波的裂纹激光超声检测方法. 激光技术. 2019(04): 110-114 . 百度学术
6. 贾中青,张振振,姬光荣. 离焦量对激光超声测厚信号影响的理论和实验研究. 红外与激光工程. 2017(S1): 13-18 . 百度学术
7. 闫政. 激光超声波探测中的智能感应设备的优化设计. 激光杂志. 2016(12): 34-38 . 百度学术
8. 马健,赵扬,张振振,高岩,孙继华,巨阳. 斜入射激光支持燃烧波时纵波声场的指向性. 强激光与粒子束. 2016(02): 25-29 . 本站查看
其他类型引用(7)
-