[1] |
Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
|
[2] |
Hangyo M. Development and future prospects of terahertz technology[J]. Japanese Journal of Applied Physics, 2015, 54(12): 120101. doi: 10.7567/JJAP.54.120101
|
[3] |
Belkin M A, Wang Q J, Pflugl C, et al. High-temperature operation of terahertz quantum cascade laser sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 952-967. doi: 10.1109/JSTQE.2009.2013183
|
[4] |
Shi X, Wu Y, Wang D, et al. Enhancing power density of strained In0.8Ga0.2As/AlAs resonant tunneling diode for terahertz radiation by optimizing emitter spacer layer thickness[J]. Superlattices & Microstructures, 2017, 112: 435-441.
|
[5] |
Maestrini A, Ward J S, Gill J J, et al. A frequency-multiplied source with more than 1 mW of power across the 840-900-GHz band[J]. IEEE Trans Microwave Theory & Techniques, 2010, 58(7): 1925-1932.
|
[6] |
Siles J V, Grajal J. Physics-based design and optimization of Schottky diode frequency multipliers for terahertz applications[J]. IEEE Trans Microwave Theory & Techniques, 2010, 58(7): 1933-1942.
|
[7] |
Chattopadhyay G. Technology, Capabilities, and Performance of low power terahertz sources[J]. IEEE Trans Terahertz Science & Technology, 2012, 1(1): 33-53.
|
[8] |
Maestrini A, Ward J S, Gill J J, et al. A 540-640-GHz high-efficiency four-anode frequency tripler[J]. IEEE Trans Microwave Theory & Techniques, 2005, 53(9): 2835-2843.
|
[9] |
Maestrini A, Mehdi I, Siles J V, et al. Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz[J]. IEEE Trans Terahertz Science & Technology, 2012, 2(2): 177-185.
|
[10] |
蒋均, 张健, 邓贤进, 等. 340 GHz基于肖特基二极管未匹配电路倍频源[J]. 红外与激光工程, 2014, 43(12): 4028-4034. doi: 10.3969/j.issn.1007-2276.2014.12.033Jiang Jun, Zhang Jian, Deng Xianjin, et al. 340 GHz frequency multiplier without matching circuit based on Schottky diodes. Infrared and Laser Engineering, 2014, 43(12): 4028-4034 doi: 10.3969/j.issn.1007-2276.2014.12.033
|
[11] |
姚常飞, 周明, 罗运生, 等. 基于倒扣技术的190~225 GHz肖特基二极管高效率二倍频器[J]. 红外与毫米波学报, 2015, 34(1): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201501002.htmYao Changfei, Zhou Ming, Luo Yunsheng, et al. A 190-225 GHz high efficiency Schottky diode doubler with circuit substrate flip-chip mounted. Journal of Infrared and Millimeter Waves, 2015, 34(1): 6-9 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201501002.htm
|
[12] |
Pardo D, Grajal J, Pérez-Moreno C G, et al. An assessment of available models for the design of Schottky-based multipliers up to THz frequencies[J]. IEEE Trans Terahertz Science & Technology, 2017, 4(2): 277-287.
|
[13] |
Grajal J, Krozer V, Gonzalez E, et al. Modeling and design aspects of millimeter-wave and submillimeter-wave Schottky diode varactor frequency multipliers[J]. IEEE Trans Microwave Theory & Techniques, 2000, 48(4): 700-711.
|
[14] |
Lipsey R E, Jones S H, Jones J R, et al. Monte Carlo harmonic-balance and drift-diffusion harmonic-balance analyses of 100-600 GHz Schottky barrier varactor frequency multipliers[J]. IEEE Trans Electron Devices, 1997, 44(11): 1843-1850. doi: 10.1109/16.641351
|