留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CSMRC结构和容性肖特基二极管的220GHz三倍频器

石向阳 刘杰 蒋均 陈鹏 陆彬 张健

石向阳, 刘杰, 蒋均, 等. 基于CSMRC结构和容性肖特基二极管的220GHz三倍频器[J]. 强激光与粒子束, 2018, 30: 093101. doi: 10.11884/HPLPB201830.180104
引用本文: 石向阳, 刘杰, 蒋均, 等. 基于CSMRC结构和容性肖特基二极管的220GHz三倍频器[J]. 强激光与粒子束, 2018, 30: 093101. doi: 10.11884/HPLPB201830.180104
Shi Xiangyang, Liu Jie, Jiang Jun, et al. 220 GHz tripler based on compact suspended microstrip resonator cell filter structure and Schottky varactors[J]. High Power Laser and Particle Beams, 2018, 30: 093101. doi: 10.11884/HPLPB201830.180104
Citation: Shi Xiangyang, Liu Jie, Jiang Jun, et al. 220 GHz tripler based on compact suspended microstrip resonator cell filter structure and Schottky varactors[J]. High Power Laser and Particle Beams, 2018, 30: 093101. doi: 10.11884/HPLPB201830.180104

基于CSMRC结构和容性肖特基二极管的220GHz三倍频器

doi: 10.11884/HPLPB201830.180104
基金项目: 

科学挑战专题资助项目 TZ2018003

详细信息
    作者简介:

    石向阳(1990—),男,博士研究生,从事太赫兹倍频技术及半导体器件研究; shixiangyang@mtrc.ac.cn

  • 中图分类号: TN454

220 GHz tripler based on compact suspended microstrip resonator cell filter structure and Schottky varactors

  • 摘要: 设计了基于容性肖特基二极管的220 GHz非平衡三倍频器。首先对容性肖特基二极管进行测试和关键参数提取,建立了肖特基二极管的等效电路模型,以此为基础进行三倍频电路设计;在倍频电路设计中通过引入紧凑悬置微带谐振单元(CSMRC)滤波结构来减小信号传输损耗;由于三倍频电路设计中难以实现全波阻抗匹配,因此采用了整体电路结构谐波平衡调匹配方法设计倍频电路,最后对制备出的倍频器进行测试和分析;实验测试结果表明:倍频器在213.1~221.6 GHz范围内输出功率大于10 mW,倍频效率大于5%,最高输出功率为18.7 mW@218.6 GHz,最高倍频效率为8.24%@217.9 GHz。
  • 图  1  肖特基二极管集总等效电路模型

    Figure  1.  Lumped equivalent model for Schottky junction

    图  2  肖特基二极管电镜图和三维电磁模型

    Figure  2.  SEM image and 3-D model of Schottky diode

    图  3  集总等效模型的I-VC-V仿真结果

    Figure  3.  Simulated I-V curve and C-V curve of lump equivalent model

    图  4  非平衡三倍频器和平衡三倍频器方案

    Figure  4.  Schematics of unbalanced and balanced tripler

    图  5  220 GHz三倍频电路拓扑结构和俯视图

    Figure  5.  Schematic of 220 GHz tripler and top view of tripler schematic

    图  6  CSMRC滤波结构和S参数仿真结果

    Figure  6.  CSMRC architecture and simulated S parameters

    图  7  220 GHz三倍频器整体电路结构和仿真结果

    Figure  7.  Structure and simulated output power of designed 220 GHz tripler

    图  8  三倍频器电路及测试模块实物图

    Figure  8.  Photograph of 220 GHz tripler and ×12 multiplier chains

    图  9  220 GHz三倍频器测试结果

    Figure  9.  Measured results of 220 GHz tripler

  • [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
    [2] Hangyo M. Development and future prospects of terahertz technology[J]. Japanese Journal of Applied Physics, 2015, 54(12): 120101. doi: 10.7567/JJAP.54.120101
    [3] Belkin M A, Wang Q J, Pflugl C, et al. High-temperature operation of terahertz quantum cascade laser sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 952-967. doi: 10.1109/JSTQE.2009.2013183
    [4] Shi X, Wu Y, Wang D, et al. Enhancing power density of strained In0.8Ga0.2As/AlAs resonant tunneling diode for terahertz radiation by optimizing emitter spacer layer thickness[J]. Superlattices & Microstructures, 2017, 112: 435-441.
    [5] Maestrini A, Ward J S, Gill J J, et al. A frequency-multiplied source with more than 1 mW of power across the 840-900-GHz band[J]. IEEE Trans Microwave Theory & Techniques, 2010, 58(7): 1925-1932.
    [6] Siles J V, Grajal J. Physics-based design and optimization of Schottky diode frequency multipliers for terahertz applications[J]. IEEE Trans Microwave Theory & Techniques, 2010, 58(7): 1933-1942.
    [7] Chattopadhyay G. Technology, Capabilities, and Performance of low power terahertz sources[J]. IEEE Trans Terahertz Science & Technology, 2012, 1(1): 33-53.
    [8] Maestrini A, Ward J S, Gill J J, et al. A 540-640-GHz high-efficiency four-anode frequency tripler[J]. IEEE Trans Microwave Theory & Techniques, 2005, 53(9): 2835-2843.
    [9] Maestrini A, Mehdi I, Siles J V, et al. Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz[J]. IEEE Trans Terahertz Science & Technology, 2012, 2(2): 177-185.
    [10] 蒋均, 张健, 邓贤进, 等. 340 GHz基于肖特基二极管未匹配电路倍频源[J]. 红外与激光工程, 2014, 43(12): 4028-4034. doi: 10.3969/j.issn.1007-2276.2014.12.033

    Jiang Jun, Zhang Jian, Deng Xianjin, et al. 340 GHz frequency multiplier without matching circuit based on Schottky diodes. Infrared and Laser Engineering, 2014, 43(12): 4028-4034 doi: 10.3969/j.issn.1007-2276.2014.12.033
    [11] 姚常飞, 周明, 罗运生, 等. 基于倒扣技术的190~225 GHz肖特基二极管高效率二倍频器[J]. 红外与毫米波学报, 2015, 34(1): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201501002.htm

    Yao Changfei, Zhou Ming, Luo Yunsheng, et al. A 190-225 GHz high efficiency Schottky diode doubler with circuit substrate flip-chip mounted. Journal of Infrared and Millimeter Waves, 2015, 34(1): 6-9 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201501002.htm
    [12] Pardo D, Grajal J, Pérez-Moreno C G, et al. An assessment of available models for the design of Schottky-based multipliers up to THz frequencies[J]. IEEE Trans Terahertz Science & Technology, 2017, 4(2): 277-287.
    [13] Grajal J, Krozer V, Gonzalez E, et al. Modeling and design aspects of millimeter-wave and submillimeter-wave Schottky diode varactor frequency multipliers[J]. IEEE Trans Microwave Theory & Techniques, 2000, 48(4): 700-711.
    [14] Lipsey R E, Jones S H, Jones J R, et al. Monte Carlo harmonic-balance and drift-diffusion harmonic-balance analyses of 100-600 GHz Schottky barrier varactor frequency multipliers[J]. IEEE Trans Electron Devices, 1997, 44(11): 1843-1850. doi: 10.1109/16.641351
  • 加载中
图(9)
计量
  • 文章访问数:  1058
  • HTML全文浏览量:  182
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-05-24
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回