留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.3 THz TM10, 1, 0模同轴耦合腔链

肖宇杰 林福民

肖宇杰, 林福民. 0.3 THz TM10, 1, 0模同轴耦合腔链[J]. 强激光与粒子束, 2018, 30: 103101. doi: 10.11884/HPLPB201830.180153
引用本文: 肖宇杰, 林福民. 0.3 THz TM10, 1, 0模同轴耦合腔链[J]. 强激光与粒子束, 2018, 30: 103101. doi: 10.11884/HPLPB201830.180153
Xiao Yujie, Lin Fumin. 0.3 THz TM10, 1, 0 mode coaxial coupled cavity chain[J]. High Power Laser and Particle Beams, 2018, 30: 103101. doi: 10.11884/HPLPB201830.180153
Citation: Xiao Yujie, Lin Fumin. 0.3 THz TM10, 1, 0 mode coaxial coupled cavity chain[J]. High Power Laser and Particle Beams, 2018, 30: 103101. doi: 10.11884/HPLPB201830.180153

0.3 THz TM10, 1, 0模同轴耦合腔链

doi: 10.11884/HPLPB201830.180153
基金项目: 

广东省自然科学基金项目 501160088

详细信息
    作者简介:

    肖宇杰(1994 —),男,硕士研究生,主要研究方向为大功率微波器件; xiao_yujie2012@163.com

    通讯作者:

    林福民(1964 —),男,博士,主要研究方向为大功率微波器件、微波滤波器与卫星导航天线等; linfumin@gdut.edu.cn

  • 中图分类号: TN122

0.3 THz TM10, 1, 0 mode coaxial coupled cavity chain

  • 摘要: 通过本征方程研究了工作在太赫兹(THz)频段的高次模同轴谐振腔,讨论了TMm, 1, 0模,TMm, 2.0模与TMm, 1, 1模的谐振频率与腔体的几何参数之间的关系,并给出了工作模式的选择依据。在此基础上,提出了一种新型的0.3 THz TM10, 1, 0模同轴耦合腔链,使用等效电路模型和CST-MWS软件对耦合腔链的色散特性、特征阻抗和电场分布等冷腔特性进行了分析和仿真,并着重分析和总结了耦合腔链的几何参数对色散特性和特征阻抗的影响。研究结果表明:对于工作在THz频段的高次模同轴耦合腔链,采用TM10, 1, 0模为工作模式是合理的选择; 工作于2π腔模的0.3 THz TM10, 1, 0模同轴耦合腔链具有较大的特征阻抗,但模式间隔较小,因此可将其应用于窄带太赫兹扩展互作用器件; 增大高次模耦合腔链的耦合槽张角是增大模式间隔的最佳途径。
  • 图  1  谐振频率与a/b的关系

    Figure  1.  Resonant frequency of TMm, 1, 0 mode and TMm, 2, 0 mode with respect to the ratio a/b

    图  2  TMm, 1, 1模谐振频率与腔体高度的关系

    Figure  2.  Resonant frequency of TMm, 1, 1 mode with respect to the cavity height

    图  3  0.3 THz TM10, 1, 0模4间隙同轴耦合腔链的结构示意图

    Figure  3.  Schematic of the 0.3 THz TM10, 1, 0 mode four-gap coaxial coupled cavity chain

    图  4  4间隙耦合腔链的等效电路

    Figure  4.  Equivalent circuit of the four-gap coupled cavity

    图  5  TM10, 1, 0模的色散特性曲线

    Figure  5.  Dispersion characteristic curves of TM10, 1, 0 mode

    图  6  腔模的轴向电场分布

    Figure  6.  Axial electric field distribution of the cavity-modes

    图  7  轴向电场沿角向的分布情况

    Figure  7.  Angular patterns of axial electric field strength

    图  8  不同耦合槽张角下的2π腔模电场分布

    Figure  8.  Electric field patterns of the 2π cavity-mode at different slot angles

    图  9  截止频率与k的关系

    Figure  9.  Cut-off frequency with respect to the coupling constant k

    图  10  截止频率与s的关系

    Figure  10.  Cut-off frequency with respect to the ratio s

    图  11  不同耦合槽张角对应的色散特性曲线

    Figure  11.  Dispersion characteristic curves with different slot angle

    图  12  不同耦合槽宽度对应的色散特性曲线

    Figure  12.  Dispersion characteristic curves with different slot width

    图  13  不同腔体高度对应的色散特性曲线

    Figure  13.  Dispersion characteristic curves with different cavity height

    图  14  不同周期长度对应的色散特性曲线

    Figure  14.  Dispersion characteristic curves with different period length

    图  15  特征阻抗与耦合槽的关系

    Figure  15.  Characteristic impedance with respect to the slot

    表  1  0.3 THz TM10, 1, 0模同轴耦合腔链的几何参数

    Table  1.   Geometric parameters of the 0.3 THz TM10, 1, 0 mode coaxial coupled cavity chain

    a/mm b/mm h/mm L/mm rm/mm r/mm α t/mm
    2.43 1.5 0.45 1.51 1.98 0.2 54 0.1
    下载: 导出CSV

    表  2  CST-MWS仿真得到的谐振频率和特征阻抗

    Table  2.   Resonant frequencies and characteristic impedance obtained by CST-MWS

    θ/rad fc/GHz fs/GHz (R/Q)/Ω
    0(2π) 300.06 304.37 45
    π/4 297.54 306.68 28
    2π/4 294.03 309.93 28
    3π/4 290.98 311.57 23
    π 289.54 312.19 27
    下载: 导出CSV
  • [1] Liu Wenxin, Zhao Chao, Li Ke, et al. Two-section folded-waveguide slow-wave structure for terahertz extended interaction oscillator[J]. IEEE Trans Electron Devices, 2014, 61(3): 902-908. doi: 10.1109/TED.2013.2297343
    [2] Zhang Kaichun, Wu Zhenhua, Liu Shenggang. Study of a rectangular coupled cavity extended interaction oscillator in sub-terahertz waves[J]. Chinese Physics B, 2008, 17(9): 3402-3406. doi: 10.1088/1674-1056/17/9/042
    [3] Pasour J, Wright E, Nguyen K T, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans Electron Devices, 2014, 61(6): 1630-1636. doi: 10.1109/TED.2013.2295771
    [4] Horoyski P, Berry D, Steer B. A 2 GHz bandwidth, high power W-band extended interaction klystron[C]//IEEE International Vacuum Electronics Conference, 2007: 151-152.
    [5] Roitman A, Berry D, Steer B. State-of-the-art W-band extended interaction klystron for the CloudSat program[J]. IEEE Trans Electron Devices, 2005, 52(5): 895-898. doi: 10.1109/TED.2005.845799
    [6] Nguyen K T, Pershing D, Wright E L, et al. Sheet-beam 90 GHz and 220 GHz extend-interaction-klystron designs[C]//IEEE International Vacuum Electronics Conference. 2007: 193-194.
    [7] 丁耀根, 阮存军, 沈斌, 等. X波段同轴腔多注速调管的研究[J]. 电子学报, 2006, 34(s1): 2337-2341. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU2006S1000.htm

    Ding Yaogen, Ruan Cunjun, Shen Bin, et al. Study of a X-band coaxial cavity multi beam klystron. Acta Electronica Sinica, 2006, 34(s1): 2337-2341 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU2006S1000.htm
    [8] 董玉和, 丁耀根, 肖刘. 同轴谐振腔高阶横磁模式参数的研究[J]. 物理学报, 2005, 54(12): 5629-5636. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200512022.htm

    Dong Yuhe, Ding Yaogen, Xiao Liu. Research on parameters of higher-order transverse magnetic modes in cylindrical coaxial cavity resonator. Acta Physica Sinica, 2005, 54(12): 5629-5636 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200512022.htm
    [9] Christie V L, Kumar L, Balakrishnan N. Improved equivalent circuit model of practical coupled-cavity slow-wave structures for TWTs[J]. Microwave & Optical Technology Letters, 2002, 35(4): 322-326.
    [10] Curnow H J. A general equivalent circuit for coupled-cavity slow-wave structures[J]. IEEE Trans Microwave Theory & Techniques, 1965, 13(5): 671-675.
    [11] Kantrowitz F, Tammaru I. Three-dimensional simulations of frequency-phase measurements of arbitrary coupled-cavity RF circuits[J]. IEEE Trans Electron Devices, 2002, 35(11): 2018-2026.
    [12] Lin Fumin, Li Xiaopeng. Monotron oscillation in double-gap coupling output cavities of multiple-beam klystrons[J]. IEEE Trans Electron Devices, 2014, 61(4): 1186-1192. doi: 10.1109/TED.2014.2303133
    [13] Lin Fumin, Liu Haixu. Design formulae of unsymmetrical double-gap output cavities of klystrons[J]. International Journal of Electronics, 2011, 98(5): 617-630. doi: 10.1080/00207217.2010.547809
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  257
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-01
  • 修回日期:  2018-07-11
  • 刊出日期:  2018-10-15

目录

    /

    返回文章
    返回