留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不连续因子的沸水堆芯三维瞬态数值模拟

段新会 姜萍 王兵树

段新会, 姜萍, 王兵树. 基于不连续因子的沸水堆芯三维瞬态数值模拟[J]. 强激光与粒子束, 2018, 30: 126003. doi: 10.11884/HPLPB201830.180178
引用本文: 段新会, 姜萍, 王兵树. 基于不连续因子的沸水堆芯三维瞬态数值模拟[J]. 强激光与粒子束, 2018, 30: 126003. doi: 10.11884/HPLPB201830.180178
Duan Xinhui, Jiang Ping, Wang Bingshu. Three-dimensional boiling water reactor core transient simulation based on discontinuity factor[J]. High Power Laser and Particle Beams, 2018, 30: 126003. doi: 10.11884/HPLPB201830.180178
Citation: Duan Xinhui, Jiang Ping, Wang Bingshu. Three-dimensional boiling water reactor core transient simulation based on discontinuity factor[J]. High Power Laser and Particle Beams, 2018, 30: 126003. doi: 10.11884/HPLPB201830.180178

基于不连续因子的沸水堆芯三维瞬态数值模拟

doi: 10.11884/HPLPB201830.180178
基金项目: 

科技部科技型中小企业技术创新基金项目 11C26211304067

详细信息
    作者简介:

    段新会(1969—), 男, 高级工程师, 主要从事核工业领域系统设备的建模、仿真与控制方面的研究工作, duanxinhui163@163.com

  • 中图分类号: TL329

Three-dimensional boiling water reactor core transient simulation based on discontinuity factor

  • 摘要: 基于不连续因子校正的粗网格有限差分法是实现堆芯瞬态三维数值模拟的高效方法之一, 粗网节块的界面不连续因子与边界反照率的计算方法决定了实时数值模拟过程中的精度。在计算不连续因子的过程中, 省去了细网节块计算与粗网均匀化过程, 直接在粗网格划分情况下, 基于节块展开法和非线性迭代策略, 推导了粗网格界面不连续因子比率与边界反照率的计算公式, 并编制了相应的计算程序。沸水堆典型算例的三维瞬态模拟证实该方法可在空间域和时间域两方面, 使静态、瞬态精度均达到与先进节块法相等同的程度, 并且计算效率优于先进节块法, 为核电站全范围模拟机三维堆芯的实时仿真模型开发提供了一种切实可行的选择。
  • 图  1  堆芯静态与瞬态计算流程图

    Figure  1.  Core static and transient calculation flow diagram

    图  2  不同计算方法在三维全堆芯的静态精度测试

    Figure  2.  Static accuracy in 3D core calculated by CHM_DF and NIM_DF

    图  3  采取不同的收敛准则时的单棒弹出瞬态曲线

    Figure  3.  Single rod transient result with different convergence ε

    图  4  采取不同的时间步长时的单棒弹出瞬态曲线

    Figure  4.  Single rod transient result with different time-step

    表  1  单棒弹出瞬态计算结果与其他程序的比较

    Table  1.   Single rod transient result comparison

    code method number of nodes Keff time to 1st peak/s power at 1st peak/ (W·cm-3) time to 1st minimum value/s power at 1st min/ (W·cm-3) time to 2nd peak/s power at 2nd peak/ (W·cm-3) power at t=3 s/ (W·cm-3) fuel temperature at 3 s/K
    QUANDRY ANM 22×22×16 0.996 57 0.950 1435 1.08 20.7 1.57 141 22.6 503
    SKETCH-N NEM 24×24×28 0.996 38 0.949 1486 1.05 34.8 1.61 103 21.8 497
    NIM_DF CMFD_DFR 22×22×24 0.996 52 0.957 1552 1.137 36.4 1.623 119 23.6 526
    δerr 0.00% 0.79% 6.26% 6.76% 4.60% 2.08% -2.46% 6.31% 5.20%
    下载: 导出CSV

    表  2  四棒弹出瞬态计算结果与其它程序的比较

    Table  2.   4 rods transient result comparison

    code method number of nodes Keff time to 1st peak/s power at 1st peak/ (W·cm-3) time to 1st minimum value/s power at 1st min/ (W·cm-3) time to 2nd peak/s power at 2nd min/ (W·cm-3) power at 3 s/ (W·cm-3) fuel temperature at 3 s/K
    QUANDRY ANM 22×22×16 0.996 48 0.907 5739 0.988 109.0 1.44 412.0 71.3 1033
    SKETCH-N NEM 24×24×28 0.996 38 0.908 5 5946 0.996 113.4 1.516 365 70.5 1018
    NIM_DF CMFD_DFR 22×22×24 0.996 51 0.903 6 046.6 1.050 122.26 1.514 417.76 76.245 1097.5
    δerr 0.01% -0.52% 3.49% 5.85% 7.25% 2.44% 7.53% 7.54% 7.02%
    下载: 导出CSV
  • [1] 郑友琦, Lee Deokjung. 基于非线性迭代的压水堆瞬态计算程序开发[J]. 强激光与粒子束, 2017, 29: 036001. doi: 10.11884/HPLPB201729.160297

    Zheng Youqi, Lee Deokjung. Nodal code development for pressurized water reactor transient analysis based on non-linear iteration method. 2017, 29: 036001 doi: 10.11884/HPLPB201729.160297
    [2] Janosy J S, Kereszturi A, Hazi G, et al. Real-time 3D simulation of a pressurized water nuclear reactor[C]//International Conference on Computer Modelling and Simulation. 2010: 414-419.
    [3] Georgieva E, Dinkov Y, Ivanov K, et al. Benchmarking the NEM real-time core model for VVER-1000 simulator application: Asymmetric core[C]//ASME 24th International Conference on Nuclear Engineering. 2016.
    [4] Masashi T, Tatsuya I, Moore B. Development of kinetics model for BWR core simulator AETNA[J]. Journal of Nuclear Science & Technology, 2003, 40(4): 201-212.
    [5] Smith K S. Spatial homogenization methods for light water reactor analysis[D]. Massachusetts: Massachusetts Institute of Technology, 1980: 12-90.
    [6] Tatsuya I, Munenari Y. Advanced nodal methods of the few-group BWR core simulator NEREUS[J]. Journal of Nuclear Science & Technology, 1999, 36(11): 996-1008.
    [7] 郭炯, 李富. 不连续因子计算强吸收体区域的改进[J]. 原子能科学技术, 2013, 47(s1): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S1009.htm

    Guo Jiong, Li Fu. Improvement of discontinuous factor for strong absorber region. Atomic Energy Science and Technology, 2013, 47(s1): 33-37 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S1009.htm
    [8] 吕栋, 俞陆林, 韩宇, 等. 处理轴向三维非均匀效应的单组件均匀化模型[J]. 核动力工程, 2014(s2): 140-142. (Lü https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2038.htm

    Dong, Yu Lulin, Han Yu, et al. Single assembly pin-by-pin homogenization model for handling axial 3D heterogeneity effect. Nuclear Power Engineering, 2014(s2): 140-142 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2038.htm
    [9] Bernal A, Roman J E, Miró R, et al. Assembly discontinuity factors for the neutron diffusion equation discretized with the finite volume method. Application to BWR[J]. Annals of Nuclear Energy, 2016, 97: 76-85. doi: 10.1016/j.anucene.2016.06.023
    [10] Vidal-Ferràndiz A, González-Pintor S, Ginestar D, et al. Use of discontinuity factors in high-order finite element methods[J]. Annals of Nuclear Energy, 2016, 87: 728-738. doi: 10.1016/j.anucene.2015.06.021
    [11] Zimin V G, Ninokata H. Nodal neutron kinetics model based on nonlinear iteration procedure for LWR analysis[J]. Annals of Nuclear Energy, 1998, 25(8): 507-528. doi: 10.1016/S0306-4549(97)00078-9
    [12] Singh T, Mazumdar T, Pandey P. NEMSQR: A 3-D multi group diffusion theory code based on nodal expansion method for square geometry[J]. Annals of Nuclear Energy, 2014, 64: 230-243. doi: 10.1016/j.anucene.2013.09.041
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  797
  • HTML全文浏览量:  161
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-26
  • 修回日期:  2018-10-06
  • 刊出日期:  2018-12-15

目录

    /

    返回文章
    返回