留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束离子阱对中性气体电荷交换的光谱诊断

梁雅琼 梁贵云 魏会冈

梁雅琼, 梁贵云, 魏会冈. 电子束离子阱对中性气体电荷交换的光谱诊断[J]. 强激光与粒子束, 2018, 30: 122002. doi: 10.11884/HPLPB201830.180202
引用本文: 梁雅琼, 梁贵云, 魏会冈. 电子束离子阱对中性气体电荷交换的光谱诊断[J]. 强激光与粒子束, 2018, 30: 122002. doi: 10.11884/HPLPB201830.180202
Liang Yaqiong, Liang Guiyun, Wei Huigang. Charge-exchange spectroscopic diagnostics for neutral gas in electron beam ion trap[J]. High Power Laser and Particle Beams, 2018, 30: 122002. doi: 10.11884/HPLPB201830.180202
Citation: Liang Yaqiong, Liang Guiyun, Wei Huigang. Charge-exchange spectroscopic diagnostics for neutral gas in electron beam ion trap[J]. High Power Laser and Particle Beams, 2018, 30: 122002. doi: 10.11884/HPLPB201830.180202

电子束离子阱对中性气体电荷交换的光谱诊断

doi: 10.11884/HPLPB201830.180202
基金项目: 

国家自然科学基金项目 11522326

北京市自然基金项目 1172006

详细信息
    作者简介:

    梁雅琼(1978—), 女,博士,副教授,从事实验室天体物理研究;yaqliang@msn.com

    通讯作者:

    梁贵云(1977—), 男,博士,研究员,从事实验室天体物理研究;gyliang@bao.ac.cn

  • 中图分类号: O532.24;O581

Charge-exchange spectroscopic diagnostics for neutral gas in electron beam ion trap

  • 摘要: 在实验室天体物理研究中,电子束离子阱(EBIT)是极端紫外(EUV)和X射线波段能谱分析的重要实验平台,其中EBIT中心残余的中性气体对离子产生存在显著影响。研究了阱区中心残余中性气体对电荷态分布的影响,发现阱区中心残余中性气体和高电荷态离子之间的电荷/能量交换过程不仅影响离子的电荷分布, 而且对激发函数(离子分布比例随电子能量关系曲线)有着极大的影响。利用电离平衡分析方法成功诊断出阱区中心区域残留的中性气体分子数密度,以及内腔室的真空度。
  • 图  1  电子束离子阱原理示意图

    Figure  1.  Scheme of the experimental setup

    图  2  对Fe13+,Fe16+和Fe17+离子不同理论计算电子碰撞电离截面与实验测量结果比较

    Figure  2.  Comparison of electron impact ionization cross sections between theories and available experimental data for Fe13+, Fe16 and Fe17+

    图  3  电子束离子阱中不同电荷态铁离子在包含和没有包含电荷交换过程(CX)下的分布

    Figure  3.  Charge state distribution of highly charged iron ions with and without charge-exchange(CX) process

    图  4  电子束能量为1590 eV下铁离子的光谱与基于计算线辐射率ε(λj)的全域拟合光谱

    Figure  4.  Global fitting to the measured spectra at beam energy of Ee=1590 eV

    图  5  Fe18+离子的激发函数轮廓与Monte-Carlo拟合曲线

    Figure  5.  Excitation function profile and Monte-Carlo fitting curve of Fe18+ ion

    图  6  优化中性气体密度与归一化因子的等高曲线图

    Figure  6.  A contour plot for the optimized neutral densities at an electron density of 10-10 cm-3, and the normalization factor

    图  7  从Fe17+,Fe18+,Fe19+和Fe20+离子诊断出的电子束离子阱阱区中心最优压强值(中心小方块区域)与归一化因子等高面图

    Figure  7.  A contour plot of optimized pressure in the center of the electron beam ion trap from the evolution curve of Fe17+, Fe18+, Fe19+ and Fe20+

    表  1  实验等离子体中残留气体密度与阱区中心压强

    Table  1.   Resultant neutral density for the #Fe1008 measurement

    ion lg(n0/cm-3) pressure/(10-8 Pa)
    Fe17+ 6.30±0.56 2.9-2.0+7.5
    Fe18+ 6.42±0.64 3.8-2.9+12.3
    Fe19+ 6.28±0.60 2.7-2.0+8.2
    Fe20+ 6.57±0.64 5.3-4.1+18.0
    Fe21+ 6.76±0.56 8.3-6.0+21.7
    Fe22+ 6.91±0.66 11.7-9.0+41.7
    下载: 导出CSV
  • [1] Dere K P, Landi E, Mason H E, et al. CHIANTI—An atomic database for emission lines. Ⅰ. Wavelengths greater than 50 Å[J]. Astronomy and Astrophysics Supplement Series, 1997, 125(1): 149-173. doi: 10.1051/aas:1997368
    [2] Landi E, Young P R, Dere K P, et al. CHIANTI—An atomic database for emission lines. ⅩⅢ. Soft X-ray improvements and other changes[J]. The Astrophysical Journal, 2013, 763(2): 86. doi: 10.1088/0004-637X/763/2/86
    [3] Smith R K, Brickhouse N S, Liedahl D A, et al. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions[J]. The Astrophysical Journal Letters, 2001, 556(2): L91. doi: 10.1086/322992
    [4] Foster A R, Ji L, Smith R K, et al. Updated atomic data and calculations for X-ray spectroscopy[J]. The Astrophysical Journal, 2012, 756(2): 128. doi: 10.1088/0004-637X/756/2/128
    [5] Smith R K, Foster A R, Brickhouse N S. Approximating the X-ray spectrum emitted from astrophysical charge exchange[J]. Astronomische Nachrichten, 2012, 333(4): 301-304. doi: 10.1002/asna.201211673
    [6] Testa P, Drake J J, Landi E. Testing EUV/X-ray atomic data for the solar dynamics observatory[J]. The Astrophysical Journal, 2012, 745(2): 111. doi: 10.1088/0004-637X/745/2/111
    [7] Gillaspy J D, Lin T, Tedesco L, et al. Fe XVII X-ray line ratios for accurate astrophysical plasma diagnostics[J]. The Astrophysical Journal, 2011, 728(2): 132. doi: 10.1088/0004-637X/728/2/132
    [8] Bernitt S, Brown G V, Rudolph J K, et al. An unexpectedly low oscillator strength as the origin of the Fe XVII emission problem[J]. Nature, 2012, 492(7428): 225. doi: 10.1038/nature11627
    [9] Loch S D, Ballance C P, Li Y, et al. Non-equilibrium modeling of the Fe XVII 3C/3D line ratio in an intense X-ray free-electron laser excited plasma[J]. The Astrophysical Journal Letters, 2015, 801(1): L13. doi: 10.1088/2041-8205/801/1/L13
    [10] Liang G Y, Baumann T M, López-Urrutia J R C, et al. Extreme-ultraviolet spectroscopy of Fe Ⅵ-Fe ⅩⅤ and its diagnostic application for electron beam ion trap plasmas[J]. The Astrophysical Journal, 2009, 696(2): 2275. doi: 10.1088/0004-637X/696/2/2275
    [11] Liang G Y, López-Urrutia J R C, Baumann T M, et al. Experimental investigations of ion charge distributions, effective electron densities, and electron-ion cloud overlap in electron beam ion trap plasma using extreme-ultraviolet spectroscopy[J]. The Astrophysical Journal, 2009, 702(2): 838. doi: 10.1088/0004-637X/702/2/838
    [12] Gillaspy J D. Precision spectroscopy of trapped highly charged heavy elements: pushing the limits of theory and experiment[J]. Physica Scripta, 2014, 89: 114004. doi: 10.1088/0031-8949/89/11/114004
    [13] Liang G Y, Li F, Wang F L, et al. X-ray and EUV spectroscopy of various astrophysical and laboratory plasmas: Collisional, photoionization and charge-exchange plasmas[J]. The Astrophysical Journal, 2014, 783(2): 124. doi: 10.1088/0004-637X/783/2/124
    [14] Hahn M, Becker A, Bernhardt D, et al. Storage ring cross section measurements for electron impact single and double ionization of Fe13+ and single ionization of Fe16+ and Fe17+[J]. The Astrophysical Journal, 2013, 767(1): 47. doi: 10.1088/0004-637X/767/1/47
    [15] Dere K P. Ionization rate coefficients for the elements hydrogen through zinc[J]. Astronomy & Astrophysics, 2007, 466(2): 771-792.
    [16] Kim Y S, Pratt R H. Direct radiative recombination of electrons with atomic ions: Cross sections and rate coefficients[J]. Physical Review A, 1983, 27(6): 2913. doi: 10.1103/PhysRevA.27.2913
    [17] Epp S W, López-Urrutia J R C, Brenner G, et al. Soft X-ray laser spectroscopy on trapped highly charged ions at FLASH[J]. Physical review letters, 2007, 98(18): 183001. doi: 10.1103/PhysRevLett.98.183001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1476
  • HTML全文浏览量:  259
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-26
  • 修回日期:  2018-11-06
  • 刊出日期:  2018-12-15

目录

    /

    返回文章
    返回