留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学设计软件X-LAB及其工程化应用

杨祖华 周维民 李鹏飞 张强强 魏来 陈勇 范全平 巫殷忠 曹磊峰

杨祖华, 周维民, 李鹏飞, 等. 光学设计软件X-LAB及其工程化应用[J]. 强激光与粒子束, 2018, 30: 112002. doi: 10.11884/HPLPB201830.180207
引用本文: 杨祖华, 周维民, 李鹏飞, 等. 光学设计软件X-LAB及其工程化应用[J]. 强激光与粒子束, 2018, 30: 112002. doi: 10.11884/HPLPB201830.180207
Yang Zuhua, Zhou Weimin, Li Pengfei, et al. Optical simulation software X-LAB and its applications[J]. High Power Laser and Particle Beams, 2018, 30: 112002. doi: 10.11884/HPLPB201830.180207
Citation: Yang Zuhua, Zhou Weimin, Li Pengfei, et al. Optical simulation software X-LAB and its applications[J]. High Power Laser and Particle Beams, 2018, 30: 112002. doi: 10.11884/HPLPB201830.180207

光学设计软件X-LAB及其工程化应用

doi: 10.11884/HPLPB201830.180207
基金项目: 

国家重点研究发展计划项目 2017YF0503300

国家重点研究发展计划项目 2017YFA0206000

详细信息
    作者简介:

    杨祖华(1987—), 男, 硕士, 从事X射线诊断技术研究; yangzuhua@caep.cn

    通讯作者:

    曹磊峰(1967—), 男, 研究员, 博士, 主要研究方向为激光等离子体诊断; leifeng.cao@caep.cn

  • 中图分类号: O438.2;TP391.9

Optical simulation software X-LAB and its applications

  • 摘要: 针对自由电子激光、同步辐射光束线以及惯性约束聚变、极端条件物理过程等X射线光学系统,开发了具有独立知识产权的光学设计仿真软件X-LAB。基于光学衍射算法和序列式光线追迹算法,该软件集光线追迹仿真、矢量衍射仿真和复杂微结构特征光学元件版图绘制等功能,具有界面友好、操作便捷、包含特殊光学模块、支持“用户定制”功能等特点,为开展X射线光学系统、光学元件概念设计、优化和研制提供了不可或缺的平台。目前,X-LAB成功应用于能谱分辨率优于1000、能谱范围10~100 eV的北京同步辐射3B1无谐波单色化束线设计中及空间分辨优于6 μm,视场500 μm的惯性约束聚变物理过程X射线诊断光学系统——K-B镜系统的设计和优化中;具有复杂微结构光子筛版图绘制功能。
  • 图  1  针孔成像系统(透射式系统)与KB成像光学系统[12](反射式光学系统)

    Figure  1.  Pinhole imaging system (transmission system) and the Kirkpatrick-Baez (KB) imaging system (reflection system)

    图  2  X-LAB中光线追迹算法的基本过程和光学系统结构抽象

    Figure  2.  General process of sequence raytracing in X-LAB v1.5 and the structure concept of real optical system

    图  3  X-LAB的主要操作界面

    Figure  3.  Main interface of X-LAB

    图  4  X-LAB中KB成像:网格在像平面上所成像的散点分布及插值拟合之后光强分布

    Figure  4.  Imaging results in X-LAB: the scatter diagram and the intensity distribution after interpolation fitting of the grid

    图  5  3B1单色化束线主要光学系统组成成份和部分参数

    Figure  5.  Main components and part parameters of the 3B1 monochromatic beamline

    图  6  单色化束线仿真结果(散点分布): (a)单色器像平面处不放置狭缝,单色器像平面上的光强分布,从上至下三个光斑对应的光子能量分别为10.01, 10, 9.99 eV;(b)单色器像平面处不放置狭缝,后置聚焦像平面上光强分布;(c)单色器像平面处放置狭缝,只允许中心波长(10 eV) 的光束通过,单色器像平面上的光强分布;(d)单色器像平面处放置狭缝,只允许中心波长的光束通过,后置聚焦像平面上的光强分布

    Figure  6.  Simulation results of 3B1 monochromatic beamline: (a) and (b) respectively represent the scatter diagrams in the image plane of monochromator and in the image plane of the rear focusing part, without slit in the image plane of monochromator; (c) and (d) respectively represent the scatter diagrams in the image plane of monochromator and in the image plane of the rear focusing part, with a slit in the image plane of monochromator

    图  7  光子筛版图(局部截图)

    Figure  7.  Local drawing of layout of grating (photon sieves)

    表  1  3B1单色化束线光学系统参数设计

    Table  1.   Parameters of 3B1 monochromatic beamline

    No. optical element main parameters @ 124 nm characteristic parameters/mm remarks
    object and image distance/mm incidence and reflection angle/(°) length and width/mm
    1 toroidal mirror 1 23 600, 5500 84, 84 450, 55 meridional and sagittal radius 85 344, 1468 photon sieves
    2 slit 1 width 0.2
    3 spherical mirror 1 3500, 350 84, 84 450, 60 radius 66 967
    4 plane grating 450, 300 83.131 8, 72.868 2 400, 50 line spacing 300 line/mm
    5 spherical mirror 2 450, 3500 84, 84 500, 60 radius 66 967
    6 slit 2 width 0.4
    7 toroidal mirror 2 1250, 1250 84, 84 500, 60 meridional and sagittal radius 11 958, 211
    下载: 导出CSV
  • [1] David Attwood. Soft X-rays and extreme ultraviolet radiation principles and applications[M]. Cambridge: Cambridge University Press, 2000.
    [2] Chrisp M P. X-ray spectrograph design[J]. Appl Opt, 1983, 22(10): 1508-1518. doi: 10.1364/AO.22.001508
    [3] Manuel S R, Niccolo C, Fan Jiang, et al. SHADOW3: A new version of the synchrotron X-ray optics modelling package[J]. J Synchrotron Rad, 2011, 18(5): 708-716. doi: 10.1107/S0909049511026306
    [4] Noda H, Namioka T, Seya M. Geometric theory of the grating[J]. Journal of the Optical Society of America, 1974, 64(8): 1031-1036. doi: 10.1364/JOSA.64.001031
    [5] Cerrina F. SHADOW PRIMER[S]. 2010.
    [6] Erko A, Idir M, Krist T, et al. Modern developments in X-ray and neutron optics[M]. Berlin/Heidelberg: Springer-Verlag, 2008.
    [7] Rehanek J, Schäfers F, Erko A, et al. Simulations of diagnostic spectrometers for the European XFEL using the ray-trace tool RAY[C]//Proc of SPIE. 2011: 814109.
    [8] 魏来, 曹磊峰, 范伟, 等. 软X光谱学光子筛衍射特性的实验表征[J]. 强激光与粒子束, 2011, 23(2): 387-391. http://www.hplpb.com.cn/article/id/4976

    Wei Lai, Cao Leifeng, Fan Wei, et al. Measurement of diffraction properties of photon sieves applied to spectroscopy for soft X-ray. High Power Laser and Particle Beams, 2011, 23(2): 387-391 http://www.hplpb.com.cn/article/id/4976
    [9] Mo Z, Zhang A, Cao X, et al. JASMIN: A parallel software infrastructure for scientific computing[J]. Front Comput Sci China, 2010, 4(4): 480-488. doi: 10.1007/s11704-010-0120-5
    [10] 徐平均, 沈卫超, 廖丽. JaVis系统中的多分辨数据组织与交互可视化[J]. 计算机研究与发展, 2010, 47(6): 996-1004. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201006006.htm

    Xu Pingjun, Shen Weichao, Liao Li. Multiresolution data organization and interactive visualization in JaVis. Journal of Computer Research and Development, 2010, 47(6): 996-1004 https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201006006.htm
    [11] 温树槐, 丁永坤. 激光惯性约束聚变诊断学[M]. 北京: 国防工业出版社, 2012.

    Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics. Beijing: National Defense Industry Press, 2012
    [12] Kirkpatrick P, Baez A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766-774. doi: 10.1364/JOSA.38.000766
    [13] 杨祖华. X-LAB v1.5使用手册[M]. 2016.

    Yang Zuhua. X-LAB v1.5 using manual. 2016
    [14] 穆宝忠, 伊圣振, 黄圣铃, 等. ICF用Kirkpatrick-Baez显微镜光学设计[J]. 强激光与粒子束, 2008, 20(3): 409-412. http://www.hplpb.com.cn/article/id/3249

    Mu Baozhong, Yi Shengzhen, Huang Shenglin, et al. Optical design of Kirkpatrick-Baez microscope for ICF. High Power Laser and Particle Beams, 2008, 20(3): 409-412 http://www.hplpb.com.cn/article/id/3249
    [15] 伊圣振, 魏来. 神光Ⅱ升级装置配套设备-KB型显微镜设计方案[R]. 2015.

    Yi Shengzhen, Wei Lai. the design scheme of the KB microscopy-SGⅡ-U related device. 2015
    [16] 魏来, 崔明启, 赵屹东. 北京同步辐射3B1无谐波束线设计方案[R]. 2016.

    Wei Lai, Cui Mingqi, Zhao Yidong. The design scheme of nonharmonic 3B1 beamline in Beijing Synchrotron Radiation Facility. 2016
    [17] 陈伯伦, 杨正华, 曹柱荣, 等. 同步辐射标定平面镜反射率不确定度分析方法研究[J]. 物理学报, 2010, 59(10): 7078-7085. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201010058.htm

    Chen Bolun, Yang Zhenghua, Cao Zhurong, et al. Reflectivity uncertainty analysis of planar mirror calibration in BSRF. Acta Physica Sinica, 2010, 59(10): 7078-7085 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201010058.htm
    [18] Bai Q, Li L, Cheng F F, et al. Study on microstructure and mechanical properties of He and H ion irradiated 6H-SiC[J]. Nuclear Instruments & Methods in Physics Research, 2015, 365: 347-351.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1694
  • HTML全文浏览量:  396
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-31
  • 修回日期:  2018-09-21
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回