留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内导体倾斜的内开槽同轴回旋管

覃觅觅 侯慎勇

覃觅觅, 侯慎勇. 内导体倾斜的内开槽同轴回旋管[J]. 强激光与粒子束, 2018, 30: 113003. doi: 10.11884/HPLPB201830.180246
引用本文: 覃觅觅, 侯慎勇. 内导体倾斜的内开槽同轴回旋管[J]. 强激光与粒子束, 2018, 30: 113003. doi: 10.11884/HPLPB201830.180246
Qin Mimi, Hou Shenyong. Corrugated coaxial gyrotron with tilted inner conductor[J]. High Power Laser and Particle Beams, 2018, 30: 113003. doi: 10.11884/HPLPB201830.180246
Citation: Qin Mimi, Hou Shenyong. Corrugated coaxial gyrotron with tilted inner conductor[J]. High Power Laser and Particle Beams, 2018, 30: 113003. doi: 10.11884/HPLPB201830.180246

内导体倾斜的内开槽同轴回旋管

doi: 10.11884/HPLPB201830.180246
基金项目: 

国家自然科学基金项目 61751101

广西科技大学博士基金项目 15Z04

详细信息
    作者简介:

    覃觅觅(1973—), 男, 博士, 副教授, 主要从事太赫兹科学与技术研究; qinmi-328.cool@163.com

  • 中图分类号: TN129

Corrugated coaxial gyrotron with tilted inner conductor

  • 摘要: 同轴回旋管中不可避免发生内导体倾斜。主要研究了内导体倾斜对特征根、Q值、谐振频率、横向电场、模式竞争和电子效率的影响,并以170 GHz TE31, 12内开槽同轴回旋管作为实例对内导体倾斜理论进行验证。结果表明,特征根和Q值随倾角θ增大而略微增加。在0~0.5°范围内,当θ稍微增大时,电子互作用效率稍微减少。如果θ增加到1.3°,则由于模式竞争严重,且横向电场畸变严重,电子互作用效率降低到只有5%。受内导体倾斜的影响, 随着θ增加,无论热腔还是冷腔,谐振频率都稍微增大。
  • 图  1  内导体倾斜TE31, 12同轴回旋管腔体结构及O坐标系和O1坐标系(DR)

    Figure  1.  Structure of corrugated coaxial cavity of TE31, 12 with tilted inner conductor and O and O1 coordinate system (DR)

    图  2  不同θ值下,TE31, 12模式特征根沿z轴的变化

    Figure  2.  Eigenvalue x of TE31, 12 along z-axis at different θ values

    图  3  电阻率σ=6.896×10-8 Ω·m时,品质因数Q随倾斜角θ的变化

    Figure  3.  Dependence of quality factor Q on tilted angle θ of inner conductor at σ=6.896×10-8 Ω·m

    图  4  TE31, 12模式频率随内导体倾角的变化

    Figure  4.  Frequency of the TE31, 12 mode vs tilted angle θ of inner conductor

    图  5  不同θ值下,TE31, 12模式归一化振幅沿z轴分布

    Figure  5.  Normalized amplitude of TE31, 12 vs z-axis at different θ values

    图  6  谐振腔中各模式相对振幅随内导体倾斜角θ的变化

    Figure  6.  Relative amplitudes vs the tilt angle θ of inner conductor at the middle of cavity

    图  7  谐振腔中部模式TE31, 12的横向电场

    Figure  7.  Transverse electric field of TE31, 12 at the middle of cavity

    图  8  不同θ值下,效率随z轴的变化

    Figure  8.  Efficiency vs z-axis at different θ values

    图  9  TE31, 12模式效率随内导体倾角θ的变化

    Figure  9.  Efficiency of the TE31, 12 mode modified by the tilted angle θ of inner conductor

  • [1] Nusinovich G S, Thumm M K A, Petelin M I. The gyrotron at 50: Historical overview[J]. J Infrared Milli Terahz Waves, 2014, 35: 325-381. doi: 10.1007/s10762-014-0050-7
    [2] Iatrou C T, Kern S, Pavelyev A B. Coaxial cavities with corrugated inner conductor for gyrotrons[J]. IEEE Trans Microwave Theory Tech, 1996, 44(1): 56-64. doi: 10.1109/22.481385
    [3] Thumm M. Progress on gyrotrons for ITER and future thermonuclear fusion reactors[J]. IEEE Trans Plasma Sci, 2011, 39(4): 971-979. doi: 10.1109/TPS.2010.2095042
    [4] Piosczyk B, Arnold A, Budig H, et al. A 2-MW, 170-GHz coaxial cavity gyrotron[J]. IEEE Trans Plasma Sci, 2004, 32(3): 413-417.
    [5] Chien-Lun Hung, Nai-How Cheng, Stable 0.3-THz gyrotron backward-wave oscillator with a tapered coaxial interaction waveguide, IEEE Trans Electron Devices, 2014, 61(6): 1812-1817. doi: 10.1109/TED.2013.2296299
    [6] Qiu C R, Zhang S C, Zhang H B, et al. Nonlinear characteristics of a coaxial-waveguide cyclotron auto resonance maser (CARM) amplifier[J]. J Phys D: Appl Phys, 2006, 39(1): 424-428.
    [7] Yuvaraj S, Kartikeyan M V, Thumm M K. RF behavior of a 220/251.5-GHz, 2-MW, triangular corrugated coaxial cavity gyrotron[J]. IEEE Trans Electron Devices, 2017, 64(10): 4287-4294. doi: 10.1109/TED.2017.2743342
    [8] Qin Mimi, Yang Kuo, Luo Yong, et al. The study of a coaxial gyrotrons with misaligned inner rod[J]. Vacuum, 2015, 115: 124-129. doi: 10.1016/j.vacuum.2015.02.018
    [9] Qin Mimi, Luo Yong, Yang Kuo, et al. Nonlinear theory of a corrugated coaxial gyrotron with misaligned inner rod[J]. IEEE Trans Electron Devices, 2014, 61(12): 4247-4252. doi: 10.1109/TED.2014.2361634
    [10] Dumbrajs O, Pavelyev A B. Insert misalignment in coaxial cavities and its influence on gyrotron operation[J]. Int J Electron, 1997, 82(3): 261-268. doi: 10.1080/002072197136084
    [11] Liu D W, Yan Y, Liu S G. Characteristics analysis of a coaxial cavity with misaligned inner rod[J]. IEEE Trans Electron Devices, 2012, 59(1): 230-233. doi: 10.1109/TED.2011.2171348
    [12] Liu D W, Yan Y, Liu S G. Analysis of the characteristics of a coaxial gyrotron cavity with a tilted inner rod[J]. IEEE Trans Electron Devices, 2012, 59(3): 841-845. doi: 10.1109/TED.2011.2177095
    [13] Dumbrajs O, Nusinovich G S. Effect of electron beam misalignments on the gyrotron efficiency[J]. Phys Plasmas, 2014, 20: 073105.
    [14] Dumbrajs O, Avramidis K A, Franck J, et al. On the dependence of the efficiency of a 240GHz high-power gyrotron on the displacement of the electron beam and on the azimuthal index[J]. Phys Plasmas, 2014, 21: 013104. doi: 10.1063/1.4862446
    [15] Abramowitz M, Stegun A. Handbook of mathematical functions: With formulas, graphs, and mathematical tables[M]. New York: U S Department of Commerce, 1964.
    [16] Piosczyk B, Dammertz G, Dumbrajs O, et al. 165-GHz coaxial cavity gyrotron[J]. IEEE Trans Plasma Sci, 2004, 32(3): 853-860. doi: 10.1109/TPS.2004.827593
  • 加载中
图(9)
计量
  • 文章访问数:  997
  • HTML全文浏览量:  213
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-25
  • 修回日期:  2018-11-05
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回