留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A compact wideband high power microwave source based on oil-filled switched oscillator

Wang Yuwei Chen Dongqun Zhang Zicheng Cao Shengguang Li Da

王俞卫, 陈冬群, 张自成, 等. 一种基于油介质开关振荡器的紧凑宽带高功率微波源[J]. 强激光与粒子束, 2019, 31: 013002. doi: 10.11884/HPLPB201931.180214
引用本文: 王俞卫, 陈冬群, 张自成, 等. 一种基于油介质开关振荡器的紧凑宽带高功率微波源[J]. 强激光与粒子束, 2019, 31: 013002. doi: 10.11884/HPLPB201931.180214
Wang Yuwei, Chen Dongqun, Zhang Zicheng, et al. A compact wideband high power microwave source based on oil-filled switched oscillator[J]. High Power Laser and Particle Beams, 2019, 31: 013002. doi: 10.11884/HPLPB201931.180214
Citation: Wang Yuwei, Chen Dongqun, Zhang Zicheng, et al. A compact wideband high power microwave source based on oil-filled switched oscillator[J]. High Power Laser and Particle Beams, 2019, 31: 013002. doi: 10.11884/HPLPB201931.180214

一种基于油介质开关振荡器的紧凑宽带高功率微波源

doi: 10.11884/HPLPB201931.180214
详细信息
  • 中图分类号: TN752.5

A compact wideband high power microwave source based on oil-filled switched oscillator

Funds: National High-tech R & D Program of China
More Information
    Author Bio:

    Wang Yuwei(1983—), male, PhD, engaged in pulsed power and high power microwave technology; ywei_wang@163.com

  • 摘要: 紧凑宽带高功率微波源研制过程中,为了提高工作电压,开关振荡器采用变压器油作为绝缘介质。研制了一种具有较小几何尺寸和前向辐射方向图的组合振子天线作为辐射天线。在设计阶段,采用电磁仿真软件对开关振荡器和辐射天线的性能进行了仿真和预测。然后,对该宽带高功率微波源进行了实验研究,并对辐射场进行了测量。结果表明:开关振荡器的工作电压超过300 kV,辐射场rE值(距离和辐射电场峰值的乘积)达到125 kV;辐射场中心振荡频率为375 MHz,3 dB带宽为24%。
  • Figure  1.  Structural schematic of the switched oscillator

    Figure  2.  Static electric field distribution inside the switched oscillator

    Figure  3.  Model of the transient simulation

    Figure  4.  Excitation signal of the discrete port

    Figure  5.  Output oscillation on the lumped resistor load

    Figure  6.  Spectrum of the output oscillations

    Figure  7.  Structural schematic of the wideband radiating antenna

    Figure  8.  Reflection coefficient of the radiating antenna

    Figure  9.  3D radiation pattern at the frequency of 380 MHz

    Figure  10.  Variation of the radiation pattern on the xz plane

    Figure  11.  Variation of the radiation pattern on the xy plane

    Figure  12.  Experimental arrangement of radiated electric field measurement

    Figure  13.  Waveform of the radiated electric field at a distance of 5 m

    Figure  14.  Spectrum of the radiated electric field

  • [1] Prather W D, Baum C E, Torres R J, et al. Survey of worldwide high-power wideband capabilities[J]. IEEE Trans Electromagnetic Compatibility, 2004, 46(3): 335-344. doi: 10.1109/TEMC.2004.831826
    [2] Baum C E. Switched oscillators[R]. Circuit and Electromagnetic System Design Notes, Note 45, 2000.
    [3] Baum C E. The dispatcher: A new mesoband, high-power radiator[C]//Proc URSI General Assembly. 2002.
    [4] Burger J, Baum C E, Prather W D, et al. Modular low frequency high power microwave generator[C]//Proc AMEREM. 2002.
    [5] Giri D V, Tesche F M, Abdalla M D, et al. Switched oscillators and their integration into helical antennas[J]. IEEE Trans Plasma Science, 2010, 38(6): 1411-1426. doi: 10.1109/TPS.2010.2047657
    [6] Vega F, Rachidi F, Mora N, et al. Design and optimization of mesoband radiators using chain parameters[C]//IEEE International Conference on Electromagnetics in Advanced Applications (ICEAA). 2011: 1310-1313.
    [7] Ryu J, Yim D, Lee J. Analysis and design of switched transmission line circuits for high-power wide-band radiation[J]. Journal of the Korean Physical Society, 2011, 59(61): 3567-3572.
    [8] Armanious M M, Tyo J S, Skipper M C, et al. Generation and radiation of high-power mesoband waveforms using quarter-wave switched oscillators[C]//Proc of 30th URSI General Assembly and Scientific Symposium. 2011: 1-4.
    [9] Armanious M, Tyo J S, Skipper M C, et al. Interaction between geometric parameters and output waveforms in high-power quarter-wave oscillators[J]. IEEE Trans Plasma Science, 2010, 38(5): 1124-1131. doi: 10.1109/TPS.2010.2044519
    [10] Tyo J S, Skipper M C, Abdalla M D, et al. Development of a high-voltage tunable source for wideband and mesoband effects testing[J]. IEEE Trans Plasma Science, 2010, 38(6): 1450-1461. doi: 10.1109/TPS.2010.2044517
    [11] Xu G, Liao Y, Xie P, et al. Frequency-tunable high-power mesoband microwave radiator[J]. IEEE Trans Plasma Science, 2011, 39(2): 652-658. doi: 10.1109/TPS.2010.2091273
    [12] Wang Yuwei, Chen Dongqun, Zhang Jiande, et al. Investigation of a compact coaxially fed switched oscillator[J]. Review of Scientific Instruments, 2013, 84: 094705. doi: 10.1063/1.4820822
    [13] Vega F, Rachidi F. A switched oscillator geometry inspired by a curvilinear space—Part Ⅰ: DC considerations[J]. IEEE Trans Plasma Science, 2016, 44(10): 2240-2248. doi: 10.1109/TPS.2016.2581308
    [14] Vega F, Rachidi F. A switched oscillator geometry inspired by a curvilinear space—Part Ⅱ: Electrodynamic considerations[J]. IEEE Trans Plasma Science, 2016, 44(10): 2249-2257. doi: 10.1109/TPS.2016.2581586
    [15] Wang Yuwei, Chen Dongqun, Zhang Jiande, et al. Investigation of a switched oscillator filled with oil[J]. High Power Laser and Particle Beams, 2016, 28: 053006. doi: 10.11884/HPLPB201628.053006
    [16] Song Heng, Chen Dongqun, Wang Yuwei, et al. Simulation and design of electric-magnetic vibrator combined antenna for radiation of wideband high power microwave[J]. High Power Laser and Particle Beams, 2016, 28: 033027. doi: 10.11884/HPLPB201628.033027
    [17] Wang Yuwei, Chen Dongqun, Zhang Jiande, et al. A compact pulsed power driving source for wideband high power microwave radiation[J]. Journal of THz Science and Electronic Information Technology, 2016, 14(2): 224-228.
  • 加载中
图(14)
计量
  • 文章访问数:  1354
  • HTML全文浏览量:  377
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-10
  • 修回日期:  2018-11-29
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回