Photonic crystal filter with 1×5 dielectric rod tuning beside a resonant cavity
-
摘要: 在正方格二维光子晶体结构中设计了基于可调谐谐振腔的带通滤波器,通过改变1×5谐振腔侧边调谐介质柱位置调节谐振腔与波导系统工作时传输的波段,用CMT理论分析了输入端耦合衰减率及输入端失谐因子对滤波器的影响。借助FDTD方法得到了滤波器波长传输谱,结果表明:当滤波器结构工作于1320~1810 nm波长段时,输出端38个通帯的-3 dB带宽Δλ范围为4.18~11.15 nm,通带峰值波长可调宽度为186.56 nm。该微型滤波器适于光电通信粗波分解复用WDDM系统设计和光集成设计等方面。Abstract: Pass-band filter based on a tunable cavity is designed in 2-dimentional square-lattice photonic crystal structure. Operational transmission bands of the waveguide and cavity system are adjusted by changing positions of tuning dielectric rods beside the 1×5 resonant cavity. The effects of input port coupling decay ratio and input port detuning factors on the filter are analyzed by using CMT(Coupled-Mode Theory). Wavelength transmission spectra of the filter are calculated with the help of FDTD (finite difference time domain) method. The results show that -3 dB band width Δλ of output 38 pass-bands ranges from 4.18 nm to 11.15 nm when the filter operates over 1320-1810 nm wavelength band. Pass-band peak wavelength tuning width of the proposed structure is 186.56 nm. The micro filter is suitable for optical telecommunication course Wavelength Division Demultiplexing(WDDM) system design and optical integration design etc.
-
表 1 改变调谐介质柱位置时光子晶体滤波器具有的光学特性
Table 1. Optical properties of the photonic crystal filter with varying positions of the tuning dielectric rods
No. d/nm λ/nm T/dB Δλ/nm No. d/nm λ/nm T/dB Δλ/nm Fig. 5(a) 1 266.8 1 684.01 -4.68 11.04 Fig. 5(b) 1 278.4 1 683.02 -4.71 11.15 2 290.0 1 679.70 -4.74 10.85 2 301.6 1 678.16 -4.73 10.79 3 313.2 1 674.67 -4.70 10.41 3 324.8 1 670.80 -4.64 9.71 4 336.4 1 667.73 -4.55 9.69 4 348.0 1 663.13 -4.41 9.23 5 359.6 1 660.08 -4.28 9.03 5 371.2 1 655.54 -4.08 8.70 6 382.8 1 651.01 -3.86 8.45 6 394.4 1 646.88 -3.68 8.29 7 406.0 1 641.65 -3.45 8.18 7 417.6 1 637.94 -3.33 8.14 8 429.2 1 632.78 -3.21 8.18 8 440.8 1 627.64 -3.18 8.21 9 452.4 1 622.90 -3.72 8.31 9 464.0 1 616.74 -3.53 8.53 10 475.6 1 613.14 -3.78 9.77 10 487.2 1 607.42 -4.28 8.95 11 498.8 1 601.73 -4.89 9.30 11 510.4 1 596.44 -5.50 9.65 12 522.0 1 589.78 -6.25 10.14 12 533.6 1 584.92 -6.71 10.30 13 545.2 1 578.70 -7.25 10.40 13 556.8 1 572.19 -7.62 10.41 14 568.4 1 566.07 -7.79 10.07 14 580.0 1 558.66 -7.79 9.45 15 591.6 1 553.98 -7.67 8.90 15 603.2 1 547.67 -7.41 8.10 16 614.8 1 541.09 -7.08 7.32 16 626.4 1 535.21 -6.80 6.71 17 638.0 1 528.05 -6.58 6.06 17 649.6 1 523.59 -6.47 5.64 18 661.2 1 517.21 -6.52 5.02 18 672.8 1 510.88 -6.68 4.76 19 684.4 1 505.23 -6.93 4.48 19 696.0 1 497.45 -7.38 4.18 Note: d represents the distance between rod center and the nearest dielectric cylinder -
[1] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. doi: 10.1103/PhysRevLett.58.2486 [2] Mohammad A, Alireza T. Design and simulation of an optical channel drop filter based on two dimensional photonic crystal single ring race track resonator[J]. International Journal of Natural and Engineering Sciences, 2013, 7(1): 14-18. [3] Tavousi A, Mansouri-Birjandi M A, Saffari M, et al. Add-drop and channel-drop optical filters based on photonic crystal ring resonators[J]. International Journal of Communications and Information Technology, 2012, 1(2): 19-24. [4] Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M, et al. A new proposal for PCRR-based channel drop filter using elliptical rings[J]. Physica E, 2014, 56(2): 211-215. [5] Qiao F, Zhang C, Wan J, et al. Photonic quantum-well structures multiple channeled filtering phenomena[J]. Applied Physics, 2000, 77(23): 3698-3700. [6] Alipour-Banaei H, Mehdizadeh F. Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters[J]. Optik, 2013, 124(17): 2639-2644. doi: 10.1016/j.ijleo.2012.07.029 [7] Dideban A, Habibiyan H, Ghafoorifard H. Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 87: 77-83. doi: 10.1016/j.physe.2016.11.022 [8] Balaji V R, Murugan M, Robinson S. DWDM demultiplexer using inverted-p photonic crystal structure[J]. International Journal of Applied Engineering Research, 2015, 10(6): 0973-4562. [9] Hsueh W J, Wun S J, Lin Z J, et al. Features of the perfect transmission in Thue-Morse dielectric multilayers[J]. Journal of Optical Society of America B, 2011, 28(11): 2584-2591. doi: 10.1364/JOSAB.28.002584 [10] Yusoff M H, Abu Hassan H, Hashim M R, et al. Hybrid photonic crystal 1.31/1.55 μm wavelength division multiplexer based on coupled line defect channels[J]. Optics Communication, 2011, 284(5): 1223-1227. doi: 10.1016/j.optcom.2010.11.018 [11] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Comput Phys, 1994, 114(2): 185-200. doi: 10.1006/jcph.1994.1159 [12] Goldberg M. Stability criteria for finite difference approximations to parabolic systems[J]. Applied Numerical Mathematics, 2000, 33(1/4): 509-515. [13] Zhu Z, Brown T G. Full-vectorial finite-difference analysis of microstructured optical fibers[J]. Opt Express, 2002, 10(17): 853-864. doi: 10.1364/OE.10.000853 [14] Ghaffari A, Monifi F, Djavid M, et al. Photonic crystal bends and power splitters based on ring resonators[J]. Optics Communications, 2008, 281(23): 5929-5934. doi: 10.1016/j.optcom.2008.09.015 [15] Ghaffari A, Monifi F, Djavid M, et al. Analysis of photonic crystal power splitters with different configurations[J]. Journal of Applied Sciences, 2008, 8(8): 1416-1425. doi: 10.3923/jas.2008.1416.1425 [16] Moloudian G, Sabbaghi-Nadooshan R, Hassangholizadeh-Kashtiban M. Design of all-optical tunable filter based on two-dimensional photonic crystals for WDM (wavedivision multiplexing) applications[J]. Journal of the Chinese Institute of Engineers, 2016, 39(8): 1-6. [17] Ahmad H, Reduan S A, Zulkifli A Z, et al. Tunable passively Q-switched thulium-fluoride fiber laser in the S+/S band (1450.0 to 1512.0 nm) region using a single-walled carbon-nanotube-based saturable absorber[J]. Applied Optics, 2017, 56(13): 3841-3847. doi: 10.1364/AO.56.003841 [18] Gao F, Luo S, Ji H M, et al. Flat-topped ultrabroad stimulated emission from chirped InAs/InP quantum dot laser with spectral width of 92 nm[J]. Applied Physics Letters, 2016, 108(20): 883-795. [19] Xu H, Shi Y. Ultra-broadband 16-channel mode division (de)multiplexer utilizing densely packed bent waveguide arrays[J]. Optics Letters, 2016, 41(20): 4815-4818. doi: 10.1364/OL.41.004815