留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谐振腔侧边1×5介质柱调谐光子晶体滤波器

吴立恒 王明红

吴立恒, 王明红. 谐振腔侧边1×5介质柱调谐光子晶体滤波器[J]. 强激光与粒子束, 2019, 31: 014101. doi: 10.11884/HPLPB201931.180227
引用本文: 吴立恒, 王明红. 谐振腔侧边1×5介质柱调谐光子晶体滤波器[J]. 强激光与粒子束, 2019, 31: 014101. doi: 10.11884/HPLPB201931.180227
Wu Liheng, Wang Minghong. Photonic crystal filter with 1×5 dielectric rod tuning beside a resonant cavity[J]. High Power Laser and Particle Beams, 2019, 31: 014101. doi: 10.11884/HPLPB201931.180227
Citation: Wu Liheng, Wang Minghong. Photonic crystal filter with 1×5 dielectric rod tuning beside a resonant cavity[J]. High Power Laser and Particle Beams, 2019, 31: 014101. doi: 10.11884/HPLPB201931.180227

谐振腔侧边1×5介质柱调谐光子晶体滤波器

doi: 10.11884/HPLPB201931.180227
基金项目: 

国家自然科学基金项目 11375081

详细信息
    作者简介:

    吴立恒(1980-),男,硕士研究生,主要从事电磁场理论与技术、物理教学理论研究;wulihenglctu@163.com

    通讯作者:

    王明红(1967-),男,教授,主要从事高功率微波与器件研究;wangminghong@lcu.edu.cn

  • 中图分类号: TN248.1

Photonic crystal filter with 1×5 dielectric rod tuning beside a resonant cavity

  • 摘要: 在正方格二维光子晶体结构中设计了基于可调谐谐振腔的带通滤波器,通过改变1×5谐振腔侧边调谐介质柱位置调节谐振腔与波导系统工作时传输的波段,用CMT理论分析了输入端耦合衰减率及输入端失谐因子对滤波器的影响。借助FDTD方法得到了滤波器波长传输谱,结果表明:当滤波器结构工作于1320~1810 nm波长段时,输出端38个通帯的-3 dB带宽Δλ范围为4.18~11.15 nm,通带峰值波长可调宽度为186.56 nm。该微型滤波器适于光电通信粗波分解复用WDDM系统设计和光集成设计等方面。
  • 图  1  谐振腔侧边1×5介质柱调谐光子晶体滤波器

    Figure  1.  Photonic crystal filter with 1×5 dielectric rod tuning beside a resonant cavity

    (a-Input port; b-Tuning rods below cavity c-Output port; d-Reflector; e-Cavity)

    图  2  调节参数τ1/τ0比值和输入端失谐因子(ω-ω0)τ1数值,输出信道正规化传输率Tθτ1/τ2比值的变化

    Figure  2.  Output channel normalized transmission T as a function of the ratio τ1/τ2 and θ at varying values of the ratio τ1/τ0 and input port detuning factor (ω-ω0)τ1

    图  3  调节参数τ1/τ0比值和输出端失谐谐因子(ω-ω0)τ1数值,输入端正规化反射率Rθτ1/τ2比值的变化

    Figure  3.  Input port normalized reflection R as a function of the ratio τ1/τ2 and θ at varying values of the ratio τ1/τ0 and input port detuning factor (ω-ω0)τ1

    图  4  调节参数τ1/τ0比值和输入端失谐谐因子(ω-ω0)τ1数值,谐振腔正规化损耗Lθτ1/τ2比值的变化

    Figure  4.  Cavity normalized loss L as a function of the ratio τ1/τ2 and θ at varying values of the ratio τ1/τ0 and input port detuning factor (ω-ω0)τ1

    图  5  改变谐振腔侧边1×5调谐柱位置得到光子晶体滤波器正规化功率传输谱

    Figure  5.  Normalized power transmission spectra of the photonic crystal filter with varying positions of 1×5 tuning dielectric rods beside the resonant cavity

    表  1  改变调谐介质柱位置时光子晶体滤波器具有的光学特性

    Table  1.   Optical properties of the photonic crystal filter with varying positions of the tuning dielectric rods

    No. d/nm λ/nm T/dB Δλ/nm No. d/nm λ/nm T/dB Δλ/nm
    Fig. 5(a) 1 266.8 1 684.01 -4.68 11.04 Fig. 5(b) 1 278.4 1 683.02 -4.71 11.15
    2 290.0 1 679.70 -4.74 10.85 2 301.6 1 678.16 -4.73 10.79
    3 313.2 1 674.67 -4.70 10.41 3 324.8 1 670.80 -4.64 9.71
    4 336.4 1 667.73 -4.55 9.69 4 348.0 1 663.13 -4.41 9.23
    5 359.6 1 660.08 -4.28 9.03 5 371.2 1 655.54 -4.08 8.70
    6 382.8 1 651.01 -3.86 8.45 6 394.4 1 646.88 -3.68 8.29
    7 406.0 1 641.65 -3.45 8.18 7 417.6 1 637.94 -3.33 8.14
    8 429.2 1 632.78 -3.21 8.18 8 440.8 1 627.64 -3.18 8.21
    9 452.4 1 622.90 -3.72 8.31 9 464.0 1 616.74 -3.53 8.53
    10 475.6 1 613.14 -3.78 9.77 10 487.2 1 607.42 -4.28 8.95
    11 498.8 1 601.73 -4.89 9.30 11 510.4 1 596.44 -5.50 9.65
    12 522.0 1 589.78 -6.25 10.14 12 533.6 1 584.92 -6.71 10.30
    13 545.2 1 578.70 -7.25 10.40 13 556.8 1 572.19 -7.62 10.41
    14 568.4 1 566.07 -7.79 10.07 14 580.0 1 558.66 -7.79 9.45
    15 591.6 1 553.98 -7.67 8.90 15 603.2 1 547.67 -7.41 8.10
    16 614.8 1 541.09 -7.08 7.32 16 626.4 1 535.21 -6.80 6.71
    17 638.0 1 528.05 -6.58 6.06 17 649.6 1 523.59 -6.47 5.64
    18 661.2 1 517.21 -6.52 5.02 18 672.8 1 510.88 -6.68 4.76
    19 684.4 1 505.23 -6.93 4.48 19 696.0 1 497.45 -7.38 4.18
    Note: d represents the distance between rod center and the nearest dielectric cylinder
    下载: 导出CSV
  • [1] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [2] Mohammad A, Alireza T. Design and simulation of an optical channel drop filter based on two dimensional photonic crystal single ring race track resonator[J]. International Journal of Natural and Engineering Sciences, 2013, 7(1): 14-18.
    [3] Tavousi A, Mansouri-Birjandi M A, Saffari M, et al. Add-drop and channel-drop optical filters based on photonic crystal ring resonators[J]. International Journal of Communications and Information Technology, 2012, 1(2): 19-24.
    [4] Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M, et al. A new proposal for PCRR-based channel drop filter using elliptical rings[J]. Physica E, 2014, 56(2): 211-215.
    [5] Qiao F, Zhang C, Wan J, et al. Photonic quantum-well structures multiple channeled filtering phenomena[J]. Applied Physics, 2000, 77(23): 3698-3700.
    [6] Alipour-Banaei H, Mehdizadeh F. Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters[J]. Optik, 2013, 124(17): 2639-2644. doi: 10.1016/j.ijleo.2012.07.029
    [7] Dideban A, Habibiyan H, Ghafoorifard H. Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 87: 77-83. doi: 10.1016/j.physe.2016.11.022
    [8] Balaji V R, Murugan M, Robinson S. DWDM demultiplexer using inverted-p photonic crystal structure[J]. International Journal of Applied Engineering Research, 2015, 10(6): 0973-4562.
    [9] Hsueh W J, Wun S J, Lin Z J, et al. Features of the perfect transmission in Thue-Morse dielectric multilayers[J]. Journal of Optical Society of America B, 2011, 28(11): 2584-2591. doi: 10.1364/JOSAB.28.002584
    [10] Yusoff M H, Abu Hassan H, Hashim M R, et al. Hybrid photonic crystal 1.31/1.55 μm wavelength division multiplexer based on coupled line defect channels[J]. Optics Communication, 2011, 284(5): 1223-1227. doi: 10.1016/j.optcom.2010.11.018
    [11] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Comput Phys, 1994, 114(2): 185-200. doi: 10.1006/jcph.1994.1159
    [12] Goldberg M. Stability criteria for finite difference approximations to parabolic systems[J]. Applied Numerical Mathematics, 2000, 33(1/4): 509-515.
    [13] Zhu Z, Brown T G. Full-vectorial finite-difference analysis of microstructured optical fibers[J]. Opt Express, 2002, 10(17): 853-864. doi: 10.1364/OE.10.000853
    [14] Ghaffari A, Monifi F, Djavid M, et al. Photonic crystal bends and power splitters based on ring resonators[J]. Optics Communications, 2008, 281(23): 5929-5934. doi: 10.1016/j.optcom.2008.09.015
    [15] Ghaffari A, Monifi F, Djavid M, et al. Analysis of photonic crystal power splitters with different configurations[J]. Journal of Applied Sciences, 2008, 8(8): 1416-1425. doi: 10.3923/jas.2008.1416.1425
    [16] Moloudian G, Sabbaghi-Nadooshan R, Hassangholizadeh-Kashtiban M. Design of all-optical tunable filter based on two-dimensional photonic crystals for WDM (wavedivision multiplexing) applications[J]. Journal of the Chinese Institute of Engineers, 2016, 39(8): 1-6.
    [17] Ahmad H, Reduan S A, Zulkifli A Z, et al. Tunable passively Q-switched thulium-fluoride fiber laser in the S+/S band (1450.0 to 1512.0 nm) region using a single-walled carbon-nanotube-based saturable absorber[J]. Applied Optics, 2017, 56(13): 3841-3847. doi: 10.1364/AO.56.003841
    [18] Gao F, Luo S, Ji H M, et al. Flat-topped ultrabroad stimulated emission from chirped InAs/InP quantum dot laser with spectral width of 92 nm[J]. Applied Physics Letters, 2016, 108(20): 883-795.
    [19] Xu H, Shi Y. Ultra-broadband 16-channel mode division (de)multiplexer utilizing densely packed bent waveguide arrays[J]. Optics Letters, 2016, 41(20): 4815-4818. doi: 10.1364/OL.41.004815
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1118
  • HTML全文浏览量:  269
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-06
  • 修回日期:  2018-12-10
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回