留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Compact pulsed power source based on explosively driven magnetic flux compression generator

Wang Yuwei Chen Dongqun Zhang Zicheng Cao Shengguang Li Da

王俞卫, 陈冬群, 张自成, 等. 基于爆磁压缩发生器的紧凑脉冲功率源[J]. 强激光与粒子束, 2019, 31: 025002. doi: 10.11884/HPLPB201931.180242
引用本文: 王俞卫, 陈冬群, 张自成, 等. 基于爆磁压缩发生器的紧凑脉冲功率源[J]. 强激光与粒子束, 2019, 31: 025002. doi: 10.11884/HPLPB201931.180242
Wang Yuwei, Chen Dongqun, Zhang Zicheng, et al. Compact pulsed power source based on explosively driven magnetic flux compression generator[J]. High Power Laser and Particle Beams, 2019, 31: 025002. doi: 10.11884/HPLPB201931.180242
Citation: Wang Yuwei, Chen Dongqun, Zhang Zicheng, et al. Compact pulsed power source based on explosively driven magnetic flux compression generator[J]. High Power Laser and Particle Beams, 2019, 31: 025002. doi: 10.11884/HPLPB201931.180242

基于爆磁压缩发生器的紧凑脉冲功率源

doi: 10.11884/HPLPB201931.180242
详细信息
  • 中图分类号: TM89

Compact pulsed power source based on explosively driven magnetic flux compression generator

More Information
    Corresponding author: Wang Yuwei (1983—), male, PhD, engaged in pulsed power and high power microwave technologies; ywei_wang@163.com
  • 摘要: 为了满足某脱离电网的应用需求,研究了一种基于爆磁压缩发生器的紧凑脉冲功率源。该脉冲功率源设计目标是对等效电容为65 pF的电容负载快速充电至数百kV。考虑到爆磁压缩发生器与负载之间的阻抗匹配,该脉冲功率源采用了一种主要由电爆炸断路开关、脉冲变压器和中间储能电容器组成的脉冲调制模块。详细介绍了该脉冲功率源的具体设计和实验研究,并对实验结果进行了分析,在此基础上讨论了下一步可能的改进优化。研究结果表明,利用该脉冲源对电容负载充电电压达到了-352 kV,电压上升时间约10 ns。
  • Figure  1.  Schematic circuit diagram of the system

    Figure  2.  Compact power conditioning module

    Figure  3.  Variations of the voltage on the intermediate capacitor and the load

    Figure  4.  Variations of Ump, ULp and tr with Cm

    Figure  5.  Variations of Umr, ULp and tr with Lc

    Figure  6.  Variations of the voltage on the intermediate capacitor and the load

    Figure  7.  Measured output current of the FCG

    Figure  8.  Measured voltage on the intermediate capacitor

    Figure  9.  Measured voltage on the capacitive load

    Table  1.   Representations of the symbols in Fig. 1

    symbol representation symbol representation
    UDC DC power source S1 crowbar switch of the power conditioning module
    C0 capacitance of the initial energy storage capacitor bank Rf resistance of the EEOS
    Lc0 connecting inductance between C0 and FCG Lp inductance of primary of the transformer
    Rc0 connecting resistance between C0 and FCG Rp resistance of primary of the transformer
    S0 discharging switch of C0 Ls inductance of secondary of the transformer
    Sg1 crowbar switch of the 1st stage of FCG Rs resistance of secondary of the transformer
    Lg1 inductance of the 1st stage of FCG Cm capacitance of intermediate capacitor
    Rg1 resistance of the 1st stage of FCG S2 transfer switch of Cm
    Lg2 inductance of the 2nd stage of FCG Lc2 connecting inductance between Cm and the load
    Rg2 resistance of the 2nd stage of FCG CL capacitance of the load
    Sg2 crowbar switch of the 2nd stage of FCG I charging current of the load
    Lc1 connecting inductance between FCG and the power conditioning module
    下载: 导出CSV
  • [1] Bluhm H. Pulsed power systems: Principles and applications[M]. Berlin: Springer, 2006.
    [2] Martin T H. An empirical formula for gas switch breakdown delay[C]//Proc of 7th IEEE Pulsed Power Conference, 1989: 73-79.
    [3] Altgilbers L L, Grishnaev I, Smith I R, et al. Magnetocumulative generators[M]. New York, Springer, 2000.
    [4] Neuber A A. Explosively driven pulsed power[M]. Berlin: Springer, 2005.
    [5] WangYuwei, Chen Dongqun, Zhang Jiande, et al. Investigation of a switched oscillator filled with oil[J]. High Power Laser and Particle Beams, 2016, 28: 053006. doi: 10.11884/HPLPB201628.053006
    [6] Reinovsky R E, Lindemuth I R, Vorthman J E. High voltage power condition systems powered by flux compression generators[C]//Proc of 7th IEEE Pulsed Power Conference. 1989: 971-974.
    [7] O'Connor K A, Curry R D, Altgilbers L L. Investigation of a high voltage, high frequency power conditioning system for use with flux compression generators[C]//Proc of 16th IEEE Pulsed Power Conference. 2007, 2: 1356-1359.
    [8] Chen Dongqun, Cao Shengguang, Li Da, et al. Cascaded helical magnetic flux compression generator with a battery as initial source[J]. High Power Laser and Particle Beams, 2005, 17(3): 457-459.
    [9] Wang Yuwei, Chen Dongqun, Cao Shengguang, et al. Investigation of miniature dynamic cascaded explosively-driven magnetic flux compression generator[J]. High Power Laser and Particle Beams, 2018, 30: 085002. doi: 10.11884/HPLPB201830.170528
    [10] Chen Dongqun. Research on dynamic-cascaded helical explosively-driven magnetic flux compression generators[D]. Changsha: National University of Defense Technology, 2005.
    [11] Wang Yuwei, Zhang Jiande, Chen Dongqun, et al. Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators[J]. Review of Scientific Instruments, 2013, 84: 014703. doi: 10.1063/1.4775488
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1791
  • HTML全文浏览量:  521
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-25
  • 修回日期:  2019-01-02
  • 刊出日期:  2019-02-15

目录

    /

    返回文章
    返回