Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector
-
摘要: ITER中性束注入器加速极需要一套逆变型直流高压电源系统。该电源采用三相三电平(TPTL)直流变换器作为基本单元,通过占空比控制实现对输出电压的快速调节。针对三相三电平直流变换器在小占空比模式下输出电压纹波大的缺点,提出了一种全新的控制策略。该策略通过协调直流母线电压的大小和逆变器占空比的变化对输出电压进行调节。为了验证新的控制策略的性能,搭建了200 kV/60 A的MATLAB/Simulink仿真模型和400 V/6 A的原理样机。仿真结果和样机实验结果表明,新的控制策略可以实现逆变型高压电源在输出电压快速可调的情况下降低输出电压纹波。
-
关键词:
- 高压电源 /
- 中性束注入器 /
- 控制策略 /
- 三相三电平直流变换器 /
- 占空比控制
Abstract: An inverter type high voltage power supply is required for the acceleration of ITER neutral beam injector (NBI) system. The power supply employs three-phase three-level DC/DC converter as its basic component. This type of power supply can regulate the output voltage rapidly by the duty cycle modulation of the inverter switches. However, when the duty cycle is very small, the output ripple will be large. A new control strategy has been studied for the power supply, the output voltage is regulated by inverter duty cycle combining with adjusting the dc-link voltage. In order to verify the control strategy, a 200 kV/60 A Simulink model and a 400 V/6 A prototype have been established. Simulation and experimental results demonstrate that the topology with this control strategy can limit the voltage ripple while maintain the rapid voltage response. -
表 1 ITER NBI加速极单级200 kV高压电源的MATLAB/Simulink仿真模型电路各元件参数
Table 1. Component parameters of ITER NBI 200 kV single-stage acceleration high voltage power supply's MATLAB/Simulink model circuit
component name component parameters HVAC source voltage 66 kV AC grid frequency 50 Hz rated capacity and frequency of the step-down rectifier transformer 16 MVA/50 Hz turn rated voltage of the step-down rectifier transformer 66 kV/2.75 kV/2.75 kV leakage inductance of the step-down rectifier transformer 4% DC-link filter inductance 1 mH DC-link filter capacitor 10 mF inverter switching frequency 150 Hz rated capacity and frequency of the isolated step-up transformer 5 MV·A/150 Hz rated voltage of the isolated step-up transformer 6.5 kV/133.3 kV AC circuit inductance 14 mH output HV filter capacitor 0.47 F/68 Ω 表 2 400 V/6 A实验样机主要元件参数
Table 2. Major component parameters of 400 V/6 A test prototype
component name component parameters gird 380 V/50 Hz capacity and voltage of the rectifier transformer 3 kV·A/380 V/ 86 V/86 V thyristor PK250HB160 DC-link LC filter 100 H/4.7 mF IGBT FF100R12KS4 clamping diode MDC2001600V IGBT RC snubber circuit 3.3 Ω/0.1 F rated voltage of the isolated transformer 200 V/200 V circuit inductance 1.6 mH diode bridge rectifier MDS100A/1600 V output HV filter capacitor 100 F prototype controller TMS320F28335 DSP 表 3 N-NBI加速极逆变型高压电源参数要求
Table 3. Parameter requirement of inverter type high voltage power supply for N-NBI
output voltage range/% output voltage precision/% output voltage ripple/% rise time/ms turn-off time/μs 0~100 2 ±5 80 < 150 -
[1] 王一农, 杜世俊, 刘小宁, 等. EAST中性束注入器加速极电源设计[J]. 合肥工业大学学报(自然科学版), 2005, 28(10): 1292-1295. doi: 10.3969/j.issn.1003-5060.2005.10.015Wang Yinong, Du Shijun, Liu Xiaoning, et al. Design of the power supply for the acceleration grids of the neutral beam injectors of the EAST tokamak. Journal of Hefei University of Technology, 2005, 28(10): 1292-1295 doi: 10.3969/j.issn.1003-5060.2005.10.015 [2] Watanabe K, Kashiwagi M, Kawashima S, et al. Design of ITER NBI power supply system[R]. JAERI-Tech 97-034, 1997. [3] Gaio E, Toigo V, Lorenzi A D, et al. The alternative design concept for the ion source power supply of the ITER neutral beam injector[J]. Fusion Engineering & Design, 2008, 83(1): 21-29. https://www.sciencedirect.com/science/article/pii/S0920379607001676 [4] Zanotto L, Ferro A, Toigo V. Assessment of performance of the acceleration grid power supply of the ITER neutral beam injector[J]. Fusion Engineering & Design, 2009, 84(7): 2037-2041. [5] Finotti C, Gaio E, Toigo V. Study of active-front-end design for the acceleration grid power supply of ITER neutral beam injector[C]//26th Annual IEEE Applied Power Electronics Conference and Exposition. 2011: 952-959. [6] Ferro A, Zanotto L, Toigo V. Control strategy for the acceleration voltage of the ITER neutral beam injector[J]. IEEE Trans Plasma Science, 2011, 40(3): 564-569. [7] Watanabe K, Kashiwagi M, Kawashima S, et al. Development of a DC 1 MV power supply technology for NB injectors[J]. Nuclear Fusion, 2006, 46(6): S332-S339. doi: 10.1088/0029-5515/46/6/S15 [8] Watanabe K, Yamamoto M, Takemoto J, et al. Design of a -1 MV DC UHV power supply for ITER NBI[J]. Nuclear Fusion, 2009, 49: 055022. doi: 10.1088/0029-5515/49/5/055022 [9] Hanada M, Akino N, Endo Y, et al. Development and design of the negative-ion-based NBI for JT-60 super advanced[J]. Journal of Plasma and Fusion Research SERIES, 2010, 9: 208-213. [10] Agostini E, Barbi I. Three-phase three-level PWM DC-DC converter[J]. IEEE Trans Power Electronics, 2011, 26(7): 1847-1856. doi: 10.1109/TPEL.2010.2090904 [11] 夏令龙. 托卡马克辅助加热系统高压电源若干关键技术研究[D]. 武汉: 华中科技大学, 2015.Xia Linglong. The study on several key techniques of high voltage power supply for auxiliary heating system in Tokamaks. Wuhan: Huazhong University of Science and Technology, 2015 [12] 章雪亮. 聚变装置辅助加热系统逆变型直流高压电源技术研究[D]. 武汉: 华中科技大学, 2016.Zhang Xueliang. Research on the technology of inverter type DC high voltage power supply for auxiliary heating system of fusion device. Wuhan: Huazhong University of Science and Technology, 2016