留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于负离子的中性束注入器加速极逆变型高压电源控制策略

张明 周澜 王姝 马少翔 章雪亮 于克训 潘垣

张明, 周澜, 王姝, 等. 基于负离子的中性束注入器加速极逆变型高压电源控制策略[J]. 强激光与粒子束, 2019, 31: 040012. doi: 10.11884/HPLPB201931.180265
引用本文: 张明, 周澜, 王姝, 等. 基于负离子的中性束注入器加速极逆变型高压电源控制策略[J]. 强激光与粒子束, 2019, 31: 040012. doi: 10.11884/HPLPB201931.180265
Zhang Ming, Zhou Lan, Wang Shu, et al. Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector[J]. High Power Laser and Particle Beams, 2019, 31: 040012. doi: 10.11884/HPLPB201931.180265
Citation: Zhang Ming, Zhou Lan, Wang Shu, et al. Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector[J]. High Power Laser and Particle Beams, 2019, 31: 040012. doi: 10.11884/HPLPB201931.180265

基于负离子的中性束注入器加速极逆变型高压电源控制策略

doi: 10.11884/HPLPB201931.180265
基金项目: 

国家自然科学基金项目 51707073

国家重点发展计划项目 2017YFE0300104

详细信息
    作者简介:

    张明(1980—),男,工学博士,教授,博士生导师, 主要从事大功率高压电源技术、自动控制技术的研究; zhangming@hust.edu.cn

    通讯作者:

    马少翔(1987—),男,工学博士,讲师,硕士生导师, 主要从事大功率高压电源技术、自动控制技术的研究; mashaoxiang@hust.edu.cn

  • 中图分类号: TM832

Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector

  • 摘要: ITER中性束注入器加速极需要一套逆变型直流高压电源系统。该电源采用三相三电平(TPTL)直流变换器作为基本单元,通过占空比控制实现对输出电压的快速调节。针对三相三电平直流变换器在小占空比模式下输出电压纹波大的缺点,提出了一种全新的控制策略。该策略通过协调直流母线电压的大小和逆变器占空比的变化对输出电压进行调节。为了验证新的控制策略的性能,搭建了200 kV/60 A的MATLAB/Simulink仿真模型和400 V/6 A的原理样机。仿真结果和样机实验结果表明,新的控制策略可以实现逆变型高压电源在输出电压快速可调的情况下降低输出电压纹波。
  • 图  1  单级加速器栅极电源(AGPS)拓扑

    Figure  1.  Topology of single-level accelerator grid power supply (AGPS)

    图  2  不对称占空比调制A相桥臂各开关时序图

    Figure  2.  Timing sequence diagram of A phase bridge with asymmetric duty cycle modulation

    图  3  逆变型直流高压电源简化电路

    Figure  3.  Simplified circuit of DC high voltage power supply with inverter

    图  4  逆变型直流高压电源输出特性曲线

    Figure  4.  Output characteristic curve of DC high voltage power supply with inverter

    图  5  逆变型直流高压电源控制原理框图

    Figure  5.  Control functional block diagram of DC high voltage power supply with inverter

    图  6  目标输出电压为200 kV时,直流母线电压与输出电压波形

    Figure  6.  DC-link voltage and output voltage waveform of 200 kV target output voltage

    图  7  目标输出电压为100 kV时,直流母线电压与输出电压波形

    Figure  7.  DC-link voltage and output voltage waveform of 100 kV target output voltage

    图  8  输出电压200 kV时,负载电流突变时电源输出波形

    Figure  8.  Power supply output waveform when load current changes abruptly at 200 kV output voltage

    图  9  输出电压为100 V时,不同预设直流母线电压下直流母线及输出电压波形图

    Figure  9.  DC-link voltage and output voltage waveform of different bus voltage when the output voltage is 100 V

    图  10  不同目标输出电压下直流母线及输出电压波形图

    Figure  10.  DC-link voltage and output voltage waveform when the output voltage is preset at 400, 300, 200 V

    图  11  负载电流突变时,输出电压波形

    Figure  11.  Output voltage waveform when load current changes abruptly

    表  1  ITER NBI加速极单级200 kV高压电源的MATLAB/Simulink仿真模型电路各元件参数

    Table  1.   Component parameters of ITER NBI 200 kV single-stage acceleration high voltage power supply's MATLAB/Simulink model circuit

    component name component parameters
    HVAC source voltage 66 kV
    AC grid frequency 50 Hz
    rated capacity and frequency of the step-down rectifier transformer 16 MVA/50 Hz
    turn rated voltage of the step-down rectifier transformer 66 kV/2.75 kV/2.75 kV
    leakage inductance of the step-down rectifier transformer 4%
    DC-link filter inductance 1 mH
    DC-link filter capacitor 10 mF
    inverter switching frequency 150 Hz
    rated capacity and frequency of the isolated step-up transformer 5 MV·A/150 Hz
    rated voltage of the isolated step-up transformer 6.5 kV/133.3 kV
    AC circuit inductance 14 mH
    output HV filter capacitor 0.47 F/68 Ω
    下载: 导出CSV

    表  2  400 V/6 A实验样机主要元件参数

    Table  2.   Major component parameters of 400 V/6 A test prototype

    component name component parameters
    gird 380 V/50 Hz
    capacity and voltage of the rectifier transformer 3 kV·A/380 V/ 86 V/86 V
    thyristor PK250HB160
    DC-link LC filter 100 H/4.7 mF
    IGBT FF100R12KS4
    clamping diode MDC2001600V
    IGBT RC snubber circuit 3.3 Ω/0.1 F
    rated voltage of the isolated transformer 200 V/200 V
    circuit inductance 1.6 mH
    diode bridge rectifier MDS100A/1600 V
    output HV filter capacitor 100 F
    prototype controller TMS320F28335 DSP
    下载: 导出CSV

    表  3  N-NBI加速极逆变型高压电源参数要求

    Table  3.   Parameter requirement of inverter type high voltage power supply for N-NBI

    output voltage range/% output voltage precision/% output voltage ripple/% rise time/ms turn-off time/μs
    0~100 2 ±5 80 < 150
    下载: 导出CSV
  • [1] 王一农, 杜世俊, 刘小宁, 等. EAST中性束注入器加速极电源设计[J]. 合肥工业大学学报(自然科学版), 2005, 28(10): 1292-1295. doi: 10.3969/j.issn.1003-5060.2005.10.015

    Wang Yinong, Du Shijun, Liu Xiaoning, et al. Design of the power supply for the acceleration grids of the neutral beam injectors of the EAST tokamak. Journal of Hefei University of Technology, 2005, 28(10): 1292-1295 doi: 10.3969/j.issn.1003-5060.2005.10.015
    [2] Watanabe K, Kashiwagi M, Kawashima S, et al. Design of ITER NBI power supply system[R]. JAERI-Tech 97-034, 1997.
    [3] Gaio E, Toigo V, Lorenzi A D, et al. The alternative design concept for the ion source power supply of the ITER neutral beam injector[J]. Fusion Engineering & Design, 2008, 83(1): 21-29. https://www.sciencedirect.com/science/article/pii/S0920379607001676
    [4] Zanotto L, Ferro A, Toigo V. Assessment of performance of the acceleration grid power supply of the ITER neutral beam injector[J]. Fusion Engineering & Design, 2009, 84(7): 2037-2041.
    [5] Finotti C, Gaio E, Toigo V. Study of active-front-end design for the acceleration grid power supply of ITER neutral beam injector[C]//26th Annual IEEE Applied Power Electronics Conference and Exposition. 2011: 952-959.
    [6] Ferro A, Zanotto L, Toigo V. Control strategy for the acceleration voltage of the ITER neutral beam injector[J]. IEEE Trans Plasma Science, 2011, 40(3): 564-569.
    [7] Watanabe K, Kashiwagi M, Kawashima S, et al. Development of a DC 1 MV power supply technology for NB injectors[J]. Nuclear Fusion, 2006, 46(6): S332-S339. doi: 10.1088/0029-5515/46/6/S15
    [8] Watanabe K, Yamamoto M, Takemoto J, et al. Design of a -1 MV DC UHV power supply for ITER NBI[J]. Nuclear Fusion, 2009, 49: 055022. doi: 10.1088/0029-5515/49/5/055022
    [9] Hanada M, Akino N, Endo Y, et al. Development and design of the negative-ion-based NBI for JT-60 super advanced[J]. Journal of Plasma and Fusion Research SERIES, 2010, 9: 208-213.
    [10] Agostini E, Barbi I. Three-phase three-level PWM DC-DC converter[J]. IEEE Trans Power Electronics, 2011, 26(7): 1847-1856. doi: 10.1109/TPEL.2010.2090904
    [11] 夏令龙. 托卡马克辅助加热系统高压电源若干关键技术研究[D]. 武汉: 华中科技大学, 2015.

    Xia Linglong. The study on several key techniques of high voltage power supply for auxiliary heating system in Tokamaks. Wuhan: Huazhong University of Science and Technology, 2015
    [12] 章雪亮. 聚变装置辅助加热系统逆变型直流高压电源技术研究[D]. 武汉: 华中科技大学, 2016.

    Zhang Xueliang. Research on the technology of inverter type DC high voltage power supply for auxiliary heating system of fusion device. Wuhan: Huazhong University of Science and Technology, 2016
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1225
  • HTML全文浏览量:  342
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-12
  • 修回日期:  2019-01-02
  • 刊出日期:  2019-04-15

目录

    /

    返回文章
    返回