留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲磁窗系统的电源设计

凌文斌 于治国 鄂鹏 马勋 李洪涛 徐风雨

凌文斌, 于治国, 鄂鹏, 等. 脉冲磁窗系统的电源设计[J]. 强激光与粒子束, 2019, 31: 040018. doi: 10.11884/HPLPB201931.180269
引用本文: 凌文斌, 于治国, 鄂鹏, 等. 脉冲磁窗系统的电源设计[J]. 强激光与粒子束, 2019, 31: 040018. doi: 10.11884/HPLPB201931.180269
Ling Wenbin, Yu Zhiguo, E Peng, et al. Design of power supply for pulsed magnetic window system[J]. High Power Laser and Particle Beams, 2019, 31: 040018. doi: 10.11884/HPLPB201931.180269
Citation: Ling Wenbin, Yu Zhiguo, E Peng, et al. Design of power supply for pulsed magnetic window system[J]. High Power Laser and Particle Beams, 2019, 31: 040018. doi: 10.11884/HPLPB201931.180269

脉冲磁窗系统的电源设计

doi: 10.11884/HPLPB201931.180269
基金项目: 

国家自然科学基金项目 51577043

详细信息
    作者简介:

    凌文斌(1994—), 男, 博士, 从事脉冲磁场调制等离子体的研究工作; 18246054131@163.com

    鄂鹏(1981—), 男, 教授,博士生导师, 从事空间等离子体环境地面模拟相关的研究工作; epeng@hit.edu.cn

  • 中图分类号: TM833;TL823

Design of power supply for pulsed magnetic window system

  • 摘要: 为满足脉冲磁窗技术对磁体激励电流的需求(平台期时间1~10 ms可调,最小值约24 kA),研究了一种能量利用率高、能库小的多电容器组分时放电电源。设计了脉冲电源的拓扑结构,基于仿真分析了电源参数与电流纹波、电容器组路数之间的关系,及其对放电回路参数变化的敏感性,给出了6路电容器组分时放电的优化结构,并通过实验进行了验证。实验过程中通过晶闸管串联提高了其关断的可靠性,通过二极管三串两并的方式解决了重频模式下二极管承受反向电压能力下降的问题,进一步提高了电源放电的可靠性。
  • 图  1  电容器组分时放电电源的拓扑结构

    Figure  1.  Topology of the power supply using capacitor banks discharging sequentially

    图  2  分时放电电源平台期脉冲电流示意图

    Figure  2.  Flattop current illumination of power supply

    图  3  电容器组电容C1C2以及脉冲电流所需电容器组路数随Δi的变化

    Figure  3.  C1, C2 and number of branches vs Δi

    图  4  分时放电电源的仿真电路

    Figure  4.  Simulation schematic of power supply

    图  5  脉冲电流的仿真结果

    Figure  5.  Simulated result of pulsed current

    图  6  输出电流对回路参数变化的敏感性分析

    Figure  6.  Sensitivity analysis of output current to load variation

    图  7  阻尼电感对功率晶闸管电流上升率的影响

    Figure  7.  Influence of damping inductor on current rising rate of thyristors

    图  8  电源的输出电流

    Figure  8.  Output current of power supply

    图  9  分时放电电源某一路晶闸管的关断回路

    Figure  9.  Turn-off loop of one thyristor

    图  10  某次晶闸管关断失败时的阴极电压与负载电流波形

    Figure  10.  Cathode voltage and load current when thyrsitor failed to turn off

    图  11  降低晶闸管关断过程中反向电压峰值的措施和过流保护措施

    Figure  11.  Methods to reduce the reverse voltage of thyristor when turning off and overcurrent protection measure

    图  12  两只晶闸管串联关断时的反向电压

    Figure  12.  Methods to reduce reverse voltage of thyristor when turning off and overcurrent protection measure

    图  13  分时放电电源续流二极管关断回路示意图

    Figure  13.  Turn-off loop of diode

    图  14  分时放电电源的续流二极管模块

    Figure  14.  Crowbar diode of power supply

    图  15  二极管的串联均压波形

    Figure  15.  Waveforms of voltage-sharing of diodes in series

  • [1] 黄涛, 张信军, 曾江涛, 等. 小型方波脉冲磁场装置的研制[J]. 强激光与粒子束, 2012, 24(4): 827-830. doi: 10.3788/HPLPB20122404.0827

    Huang Tao, Zhang Xinjun, Zeng Jiangtao, et al. Design of miniature square-pulsed magnetic field generator. High Power Laser and Particle Beams, 2012, 24(4): 827-830 doi: 10.3788/HPLPB20122404.0827
    [2] Xiao Houxiu, Ma Yue, Lü Yiliang, et al. Development of a high-stability flat-top pulsed magnetic field facility[J]. IEEE Trans Power Electronics, 2014, 29(9): 4532-4537. doi: 10.1109/TPEL.2013.2285125
    [3] Choudhury A R, Venkataraman V. A 10 tesla table-top controlled waveform magnet[J]. Review of Scientific Instruments, 2012, 83(4): 1-10.
    [4] 肖后秀. 脉冲强磁场装置及脉冲平顶磁场实现方法的实现[D]. 武汉: 华中科技大学, 2009: 61-67.

    Xiao Houxiu. Study on the power supply and magnet of a pulsed magnetic field system and realization of pulsed flattop fields. Wuhan: Huazhong University of Science and Technology, 2009: 61-67
    [5] 刘威葳. 高稳定度平顶长脉冲强磁场电源系统的研究[D]. 武汉: 华中科技大学, 2011: 87-103.

    Liu Weiwei. Study on the power supply to realize the high-stability flat-top of the long-pulse magnetic field. Wuhan: Huazhong University of Science and Technology, 2011: 87-103
    [6] Kohama Y, Kindo K. Generation of flat-top pulsed magnetic fields with feedback control approach[J]. Review of Scientific Instruments, 2015, 86 (10): 859.
    [7] Weickert F, Meier B, Zherlitsyn S, et al. Implementation of specific-heat and NMR experiments in the 1500 ms long-pulse magnet at the Hochfeld-Magnetlabor Dresden[J]. Measurement Science & Technology, 2012, 23: 105001.
    [8] 王玮, 池云龙, 唐靖宇. 40 kV/6 kA引出Kicker磁铁脉冲电源设计[J]. 强激光与粒子束, 2007, 19 (9): 1575-1579. http://www.hplpb.com.cn/article/id/3466

    Wang Wei, Chi Yunlong, Tang Jingyu. 40 kV/6 kA pulse power dupply for Kicker magnets. High Power Laser and Particle Beams, 2007, 19 (9): 1575-1579 http://www.hplpb.com.cn/article/id/3466
    [9] Spahn E, Buderer G, Wenning W. A compact pulse forming network, based on semiconducting switches, for electric gun applications[J]. IEEE Trans Magnetics, 1999, 35 (1): 378-382. doi: 10.1109/20.738435
    [10] Ding Hongfa, Yuan Yang, Xu Yun, et al. Testing and commissioning of a 135 MW pulsed power supply at the Wuhan National High Magnetic Field Center[J]. IEEE Trans Applied Superconductivity, 2014, 24(3): 1-5.
    [11] Penovi E, Retegui R G, Maestri S, et al. Multistructure power converter with H-bridge series regulator suitable for high-current high-precision-pulsed current source[J]. IEEE Trans Power Electronics, 2015, 30(12): 6534-6542. doi: 10.1109/TPEL.2014.2382533
    [12] Xiao Houxiu, Li Liang, Ding Hongfa, et al. Study on a highly stabilized pulsed power supply for high magnetic fields[J]. IEEE Trans Power Electronics, 2011, 26 (12): 3817-3822. doi: 10.1109/TPEL.2009.2039954
    [13] Ned M, Tore M U, William P R. Power electronics converters, applications and design[M]. New Jersey: Wiley, 2002.
    [14] Baliga B J. Fundamentals of power semiconductor devices[M]. New York: Springer, 2008.
    [15] John G K, Martin F S, George C V. Principles of power electronics[M]. New York: Pearson, 1991.
  • 加载中
图(15)
计量
  • 文章访问数:  1527
  • HTML全文浏览量:  294
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 修回日期:  2018-12-24
  • 刊出日期:  2019-04-15

目录

    /

    返回文章
    返回