留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摆动刻蚀法制作高衍射效率凸面闪耀光栅

王琼 沈晨 谭鑫 齐向东 巴音贺希格

王琼, 沈晨, 谭鑫, 等. 摆动刻蚀法制作高衍射效率凸面闪耀光栅[J]. 强激光与粒子束, 2019, 31: 061001. doi: 10.11884/HPLPB201931.180298
引用本文: 王琼, 沈晨, 谭鑫, 等. 摆动刻蚀法制作高衍射效率凸面闪耀光栅[J]. 强激光与粒子束, 2019, 31: 061001. doi: 10.11884/HPLPB201931.180298
Wang Qiong, Shen Chen, Tan Xin, et al. Fabrication of high-efficiency convex blazed gratings by swing ion beam etching[J]. High Power Laser and Particle Beams, 2019, 31: 061001. doi: 10.11884/HPLPB201931.180298
Citation: Wang Qiong, Shen Chen, Tan Xin, et al. Fabrication of high-efficiency convex blazed gratings by swing ion beam etching[J]. High Power Laser and Particle Beams, 2019, 31: 061001. doi: 10.11884/HPLPB201931.180298

摆动刻蚀法制作高衍射效率凸面闪耀光栅

doi: 10.11884/HPLPB201931.180298
基金项目: 

中国科学院重大科研装备研制项目 YZ201005

国家重大科学仪器设备开发专项 2011YQ120023

详细信息
    作者简介:

    王琼(1987—),女,硕士,主要从事显微光学成像研究; estella676@sina.com

    通讯作者:

    谭鑫(1981—),男,博士,研究员,博士生导师,主要从事光栅设计制作技术及光学器件微细加工技术研究; xintan_grating@163.com

  • 中图分类号: TH744.1;O433.1

Fabrication of high-efficiency convex blazed gratings by swing ion beam etching

  • 摘要: 通过摆动离子束刻蚀方法,制作了用于短波红外高光谱成像光谱仪的凸面闪耀光栅。该方法通过在光栅子午方向上进行摆动刻蚀,解决了凸面光栅子午方向的闪耀角一致性问题。建立了摆动刻蚀模型来分析摆动速度、束缝宽度等工艺参数对槽型演化的影响,并计算了优化的刻蚀工艺参数。制备了基底尺寸为67 mm,曲率半径为156.88 mm,刻线密度为45.5 gr/mm,闪耀角为2.2°的凸面闪耀光栅,并对其表面形貌及衍射效率进行了测量。实验结果表明,摆动刻蚀法能够制作出闪耀角一致性好、衍射效率高的小闪耀角凸面光栅,满足成像光谱仪对光谱分辨率和便携性的使用要求。
  • 图  1  理想情形下掩膜槽形轮廓演化过程

    Figure  1.  Groove evolution under ideal condition

    图  2  摆动刻蚀模型参数

    Figure  2.  Parameters of swing etching model

    图  3  束缝宽度大于临界宽度时槽形演化

    Figure  3.  Groove evolution when the slit width is bigger than the critical width

    图  4  样品AFM三维表面形貌图

    Figure  4.  3D profile images of samples measured by AFM

    图  5  AFM横断面图与理论模型计算出的光栅槽形对比

    Figure  5.  Measured (solidline) and simulated (dashedline) cross-section images of grating samples

    图  6  样品的衍射效率实测结果与理论模型计算结果对比

    Figure  6.  Measured and calculated results of diffraction efficiency of samples

    图  7  光栅槽形的原子力测试结果

    Figure  7.  AFM images of the grating grooves

    图  8  样品No.5和样品No.6的实测衍射效率与曲线理想衍射效率曲线的对比

    Figure  8.  Comparison between measured and ideal diffraction efficiency of No.5 and No.6

    图  9  光栅表面不同位置的原子力横断面图

    Figure  9.  Cross-section diagrams at different locations on the grating surface by AFM

    图  10  样品No.8的实测衍射效率曲线

    Figure  10.  Comparison of the measured diffraction efficiency of sample No.8 with the ideal efficiency

    表  1  摆动刻蚀凸面光栅的最佳设计参数

    Table  1.   Designed parameters of the convex grating

    aperture/mm radius/mm period/μm mask height/nm mask width/nm duty cycle blaze angle/(°) roughness/nm
    67 156.88 21.978 1000 5 498.8 1∶4 2.2±0.05 <1
    下载: 导出CSV

    表  2  摆动刻蚀工艺参数

    Table  2.   Swing etching parameters

    ion energy/eV beam current/mA accelerate voltage/V working gas ratio of Ar∶CHF3 effective etching time/min
    500 250 250 5∶3 165.88
    下载: 导出CSV

    表  3  基底表面不同位置的闪耀角

    Table  3.   Blaze angles at different locations on the substrate surface

    coordinate/mm blaze angle/(°) coordinate/mm blaze angle/(°) coordinate/mm blaze angle/(°)
    (a)(-30, -30) 2.158 3 (d)(0, -30) 2.207 2 (g)(30, -30) 2.172 3
    (b)(-30, -0) 2.170 1 (e)(0, 0) 2.205 7 (h)(30, 0) 2.167 1
    (c)(-30, 30) 2.163 1 (f)(0, 30) 2.197 6 (i)(30, 30) 2.159 6
    下载: 导出CSV
  • [1] Zhang H, Wu T, Zhang L, et al. Development of a portable field imaging spectrometer: Application for the identification of sun-dried and sulfur-fumigated Chinese herbals[J]. Applied Spectroscopy, 2016, 70(5): 879. doi: 10.1177/0003702816638293
    [2] PrietoBlanco X, MonteroOrille C, Couce B, et al. Analytical design of an Offner imaging spectrometer[J]. Optics Express, 2006, 14(20): 9156-9168. doi: 10.1364/OE.14.009156
    [3] Mouroulis P Z, McKerns M M. Pushbroom imaging spectrometer with high spectroscopic data fidelity: Experimental demonstration[J]. Optical Engineering, 2000, 39(3): 808-817. doi: 10.1117/1.602431
    [4] Gao L, Smith R T, Tkaczyk T S. Snapshot hyperspectral retinal camera with the image mapping spectrometer (IMS)[J]. Biomedical Optics Express, 2012, 3(1): 48-54. doi: 10.1364/BOE.3.000048
    [5] Mouroulis P, Wilson D W, Maker P D, et al. Convex grating types for concentric imaging spectrometers[J]. Applied Optics, 1998, 37(31): 7200-8. doi: 10.1364/AO.37.007200
    [6] Lucke R L. Out-of-plane dispersion in an Offner spectrometer[J]. Optical Engineering, 2007, 46: 073004. doi: 10.1117/1.2754316
    [7] 韩姗, 黄元申, 李柏承, 等. 消像差Offner成像光谱仪的研究进展[J]. 激光技术, 2015, 39(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201501007.htm

    Han Shan, Huang Yuanshen, Li Baicheng, et al. Progress of Offner imaging spectrometers for eliminating aberration. Laser Technology, 2015, 39(1): 33-38 https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201501007.htm
    [8] Xu D, Owen J D, Papa J C, et al. Design, fabrication, and testing of convex reflective diffraction gratings[J]. Optics Express, 2017, 25(13): 15252. doi: 10.1364/OE.25.015252
    [9] Maker P, Muller R, Wilson D, et al. New convex grating types manufactured by electron beam lithography[J]. 1998.
    [10] Mouroulis P Z, Thomas D A. Compact low-distortion imaging spectrometer for remote sensing[C]//Proc of SPIE. 1998, 3438: 31-38.
    [11] Okano M, Kikuta H, Hirai Y, et al. Optimization of diffraction grating profiles in fabrication by electron-beam lithography[J]. Applied Optics, 2004, 43(27): 5137. doi: 10.1364/AO.43.005137
    [12] Takahara K, Shiono T, Hamamoto T. High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron-beam lithography[J]. Applied Optics, 2002, 41(13): 2390-2393. doi: 10.1364/AO.41.002390
    [13] Johnson W R, Wilson D W, Bearman G. All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications[J]. OpticsLetters, 2005, 30(12): 1464-1466.
    [14] Mouroulis P Z, Hartley F T, Wilson D W, et al. Grating fabrication through X-ray lithography[C]//Proc of SPIE. 2003, 5173: 108-114.
    [15] Mouroulis P, Wilson D W, Hartley F T, et al. Concentric spectrometer forms enabled by lithographically produced gratings[J]. Frontiers in Optics, 2004: FWT2.
    [16] 刘玉娟, 崔继承, 巴音贺希格, 等. 凸面光栅成像光谱仪的研制与应用[J]. 光学 精密工程, 2012, 20(1): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201201010.htm

    Liu Yujuan, Cui Jicheng, Bayanhexig, et al. Design and application of imaging spectrometer with convex grating. Optics and Precision Engineering, 2012, 20(1): 52-57 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201201010.htm
    [17] Wilson D W, Mouroulis P Z. Recent advances in blazed grating fabrication by electron-beam lithography[C]//Proc of SPIE. 2003, 5173: 115-126.
    [18] Mouroulis P, Hartley F, Wilson D, et al. Blazed grating fabrication through gray-scale X ray lithography[J]. Optics Express, 2003, 11(3): 270-81. doi: 10.1364/OE.11.000270
    [19] Headwall Photonics Inc. Hyperspec-VNIR and Hyperspec-NIR integrated hyperspectral imaging sensors[EB/OL]. http://www.headwallphotonics.com/diffractive-optics-technology.
    [20] Reininger F M, Coradini A, Capaccioni F, et al. VIRTIS: Visible infrared thermal imaging spectrometer for the Rosetta mission[J]. 1996, 2: 1604-1606.
    [21] Davis C O, Bowles J, Leathers R A, et al. Ocean PHILLS hyperspectral imager: Design, characterization, and calibration[J]. Optics Express, 2002, 10(4): 210-221. doi: 10.1364/OE.10.000210
    [22] Liu Q, Ji Y, Wu J, et al. Study on convex grating in hyperspectral imaging spectrometers[C]//Proc of SPIE. 2009: 74940N.
    [23] Ducommun J P, Cantagrel M, Moulin M. Evolution of well-defined surface contour submitted to ion bombardment: Computer simulation and experimental investigation[J]. Journal of Materials Science, 1975, 10(1): 52-62. doi: 10.1007/BF00541031
    [24] Lin H, Lilifeng. Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photo resist mask[J]. Applied Optics, 2008, 47: 6212-6218. doi: 10.1364/AO.47.006212
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1034
  • HTML全文浏览量:  242
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-30
  • 修回日期:  2019-03-01
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回