Discrimination research on internal intrinsic safety performance evaluation of buck converter
-
摘要: 为了建立起Buck变换器内部本质安全性能评价的相关判别式,首先以简单电感电路的电弧放电为研究对象,基于热引燃理论,采用持续发热点热源温度场模型,将初始燃烧容积的温度由最高值下降至气体混合物燃烧温度的时间是否大于化学反应的时间作为判断火花能否成功引燃气体混合物的临界条件,得到了相应的火花放电时间临界值的表达式。然后,基于爆炸性试验数据对采用等效电阻法和放电电流线性模型算得的Buck变换器电感开路电弧放电能量表达式进行了修正,进而建立了Buck变换器内部本质安全性能评价的能量判别式和放电时间判别式。验证结果表明了所求放电时间临界值的合理性和所建立判别式的正确性。Abstract: This paper presents the study of establishing the relevant discriminants of the internal intrinsic safety performance evaluation of Buck converter. Firstly, the arc discharge of a simple inductor circuit was taken as the research object. Based on the thermal ignition theory, the temperature field model of the continuous heat point heat source was adopted, and the spark discharge time threshold expression used to determine whether the spark can successfully ignite the gas mixture was obtained, which was based on the condition that whether the time interval that the initial combustion volume decreases from the highest value to the combustion temperature of the gas mixture is longer than the time of the chemical reaction. Secondly, based on the explosive test data, the expression of the inductive open arc discharge energy of Buck converter calculated by the equivalent resistance method and the discharge current linear model was corrected. Furthermore, the energy discriminant and discharge time discriminant of the intrinsic safety performance evaluation of the Buck converter were established. The verification results show the rationality of the critical value of the discharge time and the correctness of the established discriminants.
-
Key words:
- intrinsic safety /
- thermal ignition /
- discharge time /
- threshold /
- buck converter /
- discriminant
-
表 1 Buck变换器临界引燃状态相关数据
Table 1. Related data of Buck converter in critical ignition state
L/μH C/μF WB/mJ WA/mJ β= WA/WB 600 15.00 0.73 3.6 3.55 700 13.00 0.71 3.1 3.24 800 11.00 0.69 2.7 2.90 900 9.60 0.67 2.4 2.68 1000 8.65 0.66 2.3 2.59 1100 7.65 0.69 2.1 2.34 1200 7.10 0.63 2.0 2.38 1300 6.60 0.62 1.9 2.42 1400 6.10 0.61 1.8 2.30 1500 5.90 0.60 1.8 2.33 1600 5.65 0.59 2.0 2.36 2000 5.00 0.57 1.7 2.28 -
[1] GB3836. 4-2010, 爆炸性环境第4部分: 由本质安全型"i"保护的设备[S].GB3836. 4-2010, Explosive environment part 4: Equipment protected by intrinsically safe "i" [2] 孟庆海, 许允之, 李素英. 电感性电路本质安全性能判别式的研究[J]. 矿业安全与环保, 1999(4): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER199904005.htmMeng Qinghai, Xu Yunzhi, Li Suying. Study on the discrimination of intrinsic safety performance of inductive circuit. Mining Safety and Environmental Protection, 1999(4): 11-15 https://www.cnki.com.cn/Article/CJFDTOTAL-ENER199904005.htm [3] 刘树林, 崔强, 李勇. Buck变换器的输出短路火花放电能量及输出本质安全判据[J]. 物理学报, 2013, 62: 168401. doi: 10.7498/aps.62.168401Liu Shulin, Cui Qiang, Li Yong. Output short-circuit spark discharging energy and output intrinsic safety criterion of Buck converters. Acta Physica Sinica, 2013, 62: 168401 doi: 10.7498/aps.62.168401 [4] 刘树林, 刘健. 本质安全Boost变换器的非爆炸内部本质安全判据[J]. 煤炭学报, 2008, 33(6): 707-712. doi: 10.3321/j.issn:0253-9993.2008.06.024Liu Shulin, Liu Jian. Non-explosive inner-intrinsic safety criterion for intrinsically safe Boost converter. Journal of China Coal Society, 2008, 33(6): 707-712 doi: 10.3321/j.issn:0253-9993.2008.06.024 [5] 刘树林, 祁俐俐. Buck变换器的等效简单电感电路及内部本安判据[J]. 西安科技大学学报, 2016, 36(3): 434-439. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201603028.htmLiu Shulin, Qi Lili. Equivalent simple-inductive-circuit and inner-intrinsic safety criterion of Buck converter. Journal of Xi'an University of Science and Technology, 2016, 36(3): 434-439 https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201603028.htm [6] 孟庆海, 牟龙华, 王崇林, 等. 本质安全电路的功率判别式[J]. 中国矿业大学学报, 2004, 33(3): 292-294. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200403013.htmMeng Qinghai, Mou Longhua, Wang Chonglin, et al. Power discriminant of intrinsically safe circuits. Journal of China University of Mining & Technology, 2004, 33 (3): 293-294 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200403013.htm [7] 柯拉夫钦克B C. 电器放电和摩擦火花的防爆性[M]. 杨洪顺, 译. 北京: 煤炭工业出版社, 1990. (Kolavchink B C. Explosion-proof of electrical discharge and friction spark. Yang Hongshun, translated. Beijing: Coal Industry Press, 1990) [8] 侯镇冰, 何绍杰, 李恕先. 固体热传导[M]. 上海: 上海科学技术出版社, 1984.Hou Zhenbing, He Shaojie, Li Shuxian. Solid heat conduction. Shanghai: Shanghai Science and Technology Press, 1984 [9] 孟庆海, 许允之, 胡天禄. 电感性本质安全电路电弧放电伏安特性分析[J]. 中国矿业大学学报, 1999, 28(4): 379-381. doi: 10.3321/j.issn:1000-1964.1999.04.021Meng Qinghai, Xu Yunzhi, Hu Tianlu. Analysis of the arc discharge volt ampere characteristics of inductive intrinsically safe circuit. Journal of China University of Mining & Technology, 1999, 28(4): 379-381 doi: 10.3321/j.issn:1000-1964.1999.04.021 [10] 寇蕾. 基于等效电阻法的本质安全型Buck DC-DC变换器的新研究[J]. 科学技术与工程, 2010, 10(11): 2632-2635. doi: 10.3969/j.issn.1671-1815.2010.11.011Kou Lei. A novel study on intrinsically safe buck DC-DC converters based on equivalent-resistance method. Science Technology and Engineering, 2010, 10(11): 2632-2635 doi: 10.3969/j.issn.1671-1815.2010.11.011 [11] 赵永秀, 刘树林, 王孟, 等. 基于安全火花试验装置的电感分断电弧电阻建模研究[J]. 电子学报, 2017, 45(5): 1078-1083. doi: 10.3969/j.issn.0372-2112.2017.05.008Zhao Yongxiu, Liu Shulin, Wang Meng, et al. Arc resistance modeling of inductor-disconnected circuit based on safety spark test apparatus. Acta Electronica Sinica, 2017, 45(5): 1078-1083 doi: 10.3969/j.issn.0372-2112.2017.05.008