留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向磁场下感应耦合放电模式转换的实验研究

马旺 李益文 赵伟灼 魏小龙 罗思海

马旺, 李益文, 赵伟灼, 等. 轴向磁场下感应耦合放电模式转换的实验研究[J]. 强激光与粒子束, 2019, 31: 022002. doi: 10.11884/HPLPB201931.180325
引用本文: 马旺, 李益文, 赵伟灼, 等. 轴向磁场下感应耦合放电模式转换的实验研究[J]. 强激光与粒子束, 2019, 31: 022002. doi: 10.11884/HPLPB201931.180325
Ma Wang, Li Yiwen, Zhao Weizhuo, et al. Experimental investigation on mode transition of inductively coupled plasma discharge under axial magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 022002. doi: 10.11884/HPLPB201931.180325
Citation: Ma Wang, Li Yiwen, Zhao Weizhuo, et al. Experimental investigation on mode transition of inductively coupled plasma discharge under axial magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 022002. doi: 10.11884/HPLPB201931.180325

轴向磁场下感应耦合放电模式转换的实验研究

doi: 10.11884/HPLPB201931.180325
基金项目: 

国家自然科学基金项目 61627901

国家自然科学基金项目 11602302

国家自然科学基金项目 11805277

陕西省自然科学基础研究计划面上项目 2017JM1022

详细信息
    作者简介:

    马旺(1994—), 男,硕士研究生,从事射频感应耦合放电研究; 2213096037@qq.com

    通讯作者:

    李益文(1983—), 男,博士,讲师,从事磁流体动力学研究; Lee_yiwen@163.com

  • 中图分类号: O539

Experimental investigation on mode transition of inductively coupled plasma discharge under axial magnetic field

  • 摘要: 为探究轴向磁场对纯Ar感应耦合等离子体放电模式转换的影响,设计并搭建一整套等离子体产生装置展开实验研究,引入阻抗分析法对放电模式转换进行判断,并得到了朗缪尔探针法的验证。实验发现,当气压为10 Pa时,轴向磁场强度的增加使得E-H和H-E模式转换的阈值功率增大;同时,随着轴向磁场的增强,放电中心区域的电子密度不断降低。初步分析认为,这是由于带电粒子在洛伦兹力作用下做回旋运动,导致高能电子在垂直磁场方向上的碰撞减少,降低了电子密度以及感应耦合效率。进一步分析电子能量概率函数(EEPF)发现,在E模式下,轴向磁场对电子运动的约束作用更加明显,高能电子(>27 eV)所占比例增多,电子能量分布更加均匀。
  • 图  1  等离子体产生装置示意图

    Figure  1.  Schematic of plasma generating device

    图  2  E模式和H模式下放电图像

    Figure  2.  Diagram of discharge under E mode and H mode

    图  3  零磁场和11.30 mT磁场条件下的阻抗模值、相位曲线

    Figure  3.  Waveforms of impedance modulus and phase under 0 and 11.30 mT magnetic field

    图  4  不同磁场强度下的电子密度图

    Figure  4.  Chart of electron density under different magnetic intensities

    图  5  模式转换功率图

    Figure  5.  Chart of mode transition power vs magnetic field intensity

    图  6  E模式和H模式下的电子能量概率函数图

    Figure  6.  Chart of electron energy probability function under E mode and H mode

  • [1] 徐会静. 射频感性耦合氢等离子体放电模式转换及回滞的模拟研究[D]. 大连: 大连理工大学, 2016.

    Xu Huijing. Simulation investigation of mode transitions and hysteresis in radio frequency H2 inductively coupled plasma. Dalian: Dalian University of Technology, 2016
    [2] Cunge G, Crowley B, Vender D, et al. Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry: bi-stability and hysteresis[J]. Plasma sources science and technology, 1999, 8(4): 576-586. doi: 10.1088/0963-0252/8/4/309
    [3] Kortshagen U, Gibson N D, Lawler J E. On the E-H mode transition in RF inductive discharges[J]. Journal of Physics D: Applied Physics, 1996, 29(5): 1224-1236. doi: 10.1088/0022-3727/29/5/017
    [4] Singh S V, Kempkes P, Soltwisch H. Electron energy distribution function close to the mode transition region in an inductively coupled gaseous electronics conference reference cell[J]. Appl Phys Lett, 2006, 89: 161501. doi: 10.1063/1.2362599
    [5] Singh S V. Hysteresis and mode transition in terms of electron energy distribution function for an inductively coupled argon discharge[J]. Journal of Physics D: Applied Physics Letters, 2006, 103: 083303.
    [6] Lee H C, Chung C W. Experimental measurements of spatial plasma potentials and electron energy distributions in inductively coupled plasma under weakly collisional and nonlocal electron kinetic regimes[J]. Physics of Plasmas, 2012, 19: 033514. doi: 10.1063/1.3692768
    [7] Turner M M, Lieberman M A. Hysteresis and the E-to-H transition in radiofrequency inductive discharges[J]. Plasma Sources Science and Technology, 1999, 8(2): 313-324. doi: 10.1088/0963-0252/8/2/312
    [8] El-Fayoumi I M, Jones I R, Turner M M. Hysteresis in the E- to H- mode transition in a planar coil inductively coupled rf argon discharge[J]. Journal of Physics D: Applied Physics, 1998, 31(21): 3082-3094. doi: 10.1088/0022-3727/31/21/014
    [9] Kralkina E A, Rukhadze A A, Nekliudova P A, et al. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field[J]. Aip Advances, 2018, 8: 035217. doi: 10.1063/1.5023631
    [10] 汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 合肥: 中国科学技术大学, 2014.

    Wang Jian. Experimental study of radio frequency inductively coupled plasma and mode transition. Hefei: University of Science and Technology of China, 2014
    [11] Lee H C, Chung C W. Effect of antenna size on electron kinetics in inductively coupled plasmas[J]. Physics of Plasmas, 2013, 20: 101607. doi: 10.1063/1.4823470
    [12] Edamura M, Benck E C. Effects of voltage distribution along an induction coil and discharge frequency in inductively coupled plasmas[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2004, 22(2): 293-301.
    [13] Ding Z F, Yuan G Y, Gao W, et al. Effects of impedance matching network on the discharge mode transitions in a radio-frequency inductively coupled plasma[J]. Physics of Plasmas, 2008, 15: 063506. doi: 10.1063/1.2931038
    [14] 沈苑, 王瑞雪, 章程, 等. 微秒脉冲激励的大气压氦等离子体射流放电特性[J]. 强激光与粒子束, 2016, 28: 055001. doi: 10.11884/HPLPB201628.055001

    Shen Yuan, Wang Ruixue, Zhang Cheng, et al. Characterization of atmospheric pressure helium plasma jet driven by microsecond pulse. High Power Laser and Particle Beams, 2016, 28: 055001 doi: 10.11884/HPLPB201628.055001
    [15] Lee M H, Chung C W. Observation of inverse hysteresis in the E to H mode transitions in inductively coupled plasmas[J]. Plasma Sources Science and Technology, 2010, 19: 015011. doi: 10.1088/0963-0252/19/1/015011
    [16] 彭永伦, 杨莉, 王民盛, 等. 等离子体X射线吸收谱及发射谱研究[J]. 强激光与粒子束, 2002, 14(3): 389-393. http://www.hplpb.com.cn/article/id/1307

    Peng Yonglun, Yang Li, Wang Minsheng, et al. X-ray absorption spectra and emission spectra of plasmas. High Power Laser and Particle Beams, 2002, 14(3): 389-393 http://www.hplpb.com.cn/article/id/1307
    [17] 何永乐, 高俊, 左都罗, 等. 大气压He-Ar射频容性放电Ar亚稳态粒子数密度[J]. 强激光与粒子束, 2017, 29: 051002. doi: 10.11884/HPLPB201729.160465

    He Yongle, Gao Jun, Zuo Duluo, et al. Ar metastable particle number density of He-Ar RF capacitive discharge at atmospheric pressure. High Power Laser and Particle Beams, 2017, 29: 051002 doi: 10.11884/HPLPB201729.160465
    [18] 杜寅昌, 曹金祥, 汪建, 等. 射频电感耦合夹层等离子体中的模式转换[J]. 物理学报, 2012, 61: 195206. doi: 10.7498/aps.61.195206

    Du Yinchang, Cao Jinxiang, Wang Jian, et al. Mode transition of inductively coupled plasma in interlayer chamber. Acta Physica Sinica, 2012, 61: 195206 doi: 10.7498/aps.61.195206
    [19] Song H Y, Kim C W, Pard S G, et al. Dependence of etch selectivity of SiO2 etching on the axial magnetic field added to ICP[J]. Journal of the Korean Physical Society, 2004, 45: S748-S751.
    [20] Hoam O B, Jeong J S, Park S G. Improvement of ICP plasma with periodic control of axial magnetic field[J]. Surface and Coatings Technology, 1999, 120/121: 752-756.
    [21] Lee Y J, Kim K N, Song B K, et al. Linear internal inductively coupled plasma (ICP) source with magnetic fields for large area processing[J]. Thin Solid Films, 2003, 435(1): 275-279.
    [22] Kim K N, Lim J H, Park J K, et al. Plasma characteristics and antenna electrical characteristics of an internal linear inductively coupled plasma source with a multi-polar magnetic field[J]. Plasma Chemistry & Plasma Processing, 2008, 28(1): 147-158.
    [23] Kim K N, Lim J H, Yeom G Y. Plasma and antenna characteristics of a linearly extended inductively coupled plasma system using multi-polar magnetic field[J]. Thin Solid Films, 2007, 515(12): 5193-5196.
    [24] 王品乐. 弱磁场对柱面感性耦合等离子体参数径向分布的影响[D]. 大连: 大连理工大学, 2014.

    Wang Pinle. The effects of weak magnetic field on radial characteristics profile of cylindrical inductively coupled plasma. Dalian: Dalian University of Technology, 2014
    [25] 乔馨慧. 磁场对容性及感应耦合等离子体性质影响的数值模拟研究[D]. 武汉: 华中科技大学, 2014.

    Qiao Xinhui. Numerical simulation study of influence of magnetic field on the capacitive inductively coupled plasma. Wuhan: Huazhong University of Science of Technology, 2014
    [26] 郑春开. 等离子体物理[M]. 北京: 北京大学出版社, 2009.

    Zheng Chunkai. Plasma Physics. Beijing: Peking University Press, 2009
    [27] Lee Y W, Lee H L, Chung T H. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas[J]. Journal of Applied Physics, 2011, 109: 113302.
  • 加载中
图(6)
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  212
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-15
  • 修回日期:  2019-01-09
  • 刊出日期:  2019-02-15

目录

    /

    返回文章
    返回