留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

容性耦合射频氩等离子体放电诊断研究及仿真模拟

庞佳鑫 何湘 陈秉岩 刘冲 朱寒

庞佳鑫, 何湘, 陈秉岩, 等. 容性耦合射频氩等离子体放电诊断研究及仿真模拟[J]. 强激光与粒子束, 2019, 31: 032002. doi: 10.11884/HPLPB201931.180329
引用本文: 庞佳鑫, 何湘, 陈秉岩, 等. 容性耦合射频氩等离子体放电诊断研究及仿真模拟[J]. 强激光与粒子束, 2019, 31: 032002. doi: 10.11884/HPLPB201931.180329
Pang Jiaxin, He Xiang, Chen Bingyan, et al. Diagnostic study and simulation of capacitive coupled RF plasma[J]. High Power Laser and Particle Beams, 2019, 31: 032002. doi: 10.11884/HPLPB201931.180329
Citation: Pang Jiaxin, He Xiang, Chen Bingyan, et al. Diagnostic study and simulation of capacitive coupled RF plasma[J]. High Power Laser and Particle Beams, 2019, 31: 032002. doi: 10.11884/HPLPB201931.180329

容性耦合射频氩等离子体放电诊断研究及仿真模拟

doi: 10.11884/HPLPB201931.180329
基金项目: 

国家自然科学基金项目 61378037

中央高校基本科研业务费项目 2018B19814

详细信息
    作者简介:

    庞佳鑫(1997-), 男,本科生;1575804644@qq.com

    通讯作者:

    何湘(1981-), 女,副教授;hexiang81@163.com

  • 中图分类号: O531

Diagnostic study and simulation of capacitive coupled RF plasma

  • 摘要: 针对中等气压、中等功率下射频容性耦合(CCRF)等离子体的放电特性,采用基于流体模型的COMSOL软件仿真,建立一维等离子体放电模型,以Ar为工作气体,研究同一气压时不同射频输入功率下等离子体电子温度和电子密度的分布规律。同时依据仿真模型设计制作相同尺寸的密闭玻璃腔体和平板电极,实验测量了不同射频输入功率时放电等离子体的有效电流电压及发射光谱,进而计算等离子体的电子温度及电子密度;利用玻耳兹曼双线测温法,得到光谱法下等离子体的电子温度及电子密度。结果表明:当气体压强为250 Pa、输入功率为100~450 W时,等离子体电压电流呈线性关系,电子密度随功率的增大而增大,而电子温度并未随功率的变化而有明显变化,其与功率无关。运用仿真模拟验证了实验的准确性,通过比较,三种方法所得的结果相近。通过结合等效回路法、光谱法和数值模拟仿真法初步诊断出中等气压下等离子体的放电参数,提出了结合三种方法作为实验研究的方法,使实验结果更具说服力,证明其方法的可靠性,也为进一步的等离子体特性研究提供依据。
  • 图  1  容性耦合射频氩等离子体的制备及诊断实验装置

    Figure  1.  Preparation and diagnostic experiment device of capacitive coupled RF argon plasma

    图  2  气压为250 Pa时不同输入功率下的电流电压图

    Figure  2.  Current and voltage images with different input power at 250 Pa

    图  3  气压为250 Pa时电压随电流的变化关系曲线

    Figure  3.  Relationship between voltage and current when the air pressure is 250 Pa

    图  4  气压为250 Pa时电子密度随电流及功率的变化关系曲线

    Figure  4.  Relationship between electron density and current and power when air pressure is 250 Pa

    图  5  气压为250 Pa时电子温度随电流以及功率的变化关系图像

    Figure  5.  Relationship between electron temperature and current and power when air pressure is 250 Pa

    图  6  气压为250 Pa,功率为350 W时极板中心处测得的波长范围为790~830 nm的发射光谱

    Figure  6.  Emission spectra at the center of the plate at 250 Pa atmospheric pressure and 350 W power ranging from 790 nm to 830 nm

    图  7  250 Pa时电子密度随功率以及电流的变化关系图像

    Figure  7.  Relationship between electron density and power and current at 250 Pa

    图  8  250 Pa时电子温度随功率以及电流的变化关系图像

    Figure  8.  Relationship between electron temperature and power and current at 250 Pa

    图  9  仿真模型原理图

    Figure  9.  Schematic diagram of simulation model

    图  10  仿真模拟下电子温度随距离变化的分布情况

    Figure  10.  Simulation of the distribution of electron temperature with distance

    图  11  仿真模拟下电子密度随距离变化的分布情况

    Figure  11.  Distribution of electron density versus distance under simulation

    图  12  仿真模拟与实验所得的电子密度的比较图

    Figure  12.  Comparison of electron density obtained from simulation and experiment

    表  1  气体为氩气时的几条特征谱线所对应的激发能、统计权重和跃迁几率

    Table  1.   Excitation energy, statistical weight and transition probability corresponding to several characteristic lines of argon gas

    λ/nm E/eV G A/(×107 s-1)
    811.5 13.08 7 3.31
    826.5 13.33 3 1.53
    476.5 19.87 4 6.4
    457.3 19.87 4 4.71
    663.8 19.61 4 1.37
    617.2 19.61 6 2
    下载: 导出CSV

    表  2  实验与模拟的电子密度结果的比较

    Table  2.   Comparison of electron density between experiment and simulation

    P/W current voltage method/m-3 electron density/m-3
    simulation spectroscopy
    100 5.20×1016 3.90×1016 5.59×1017
    200 8.08×1016 4.50×1016 9.14×1017
    300 1.02×1017 9.18×1016 1.76×1018
    400 1.33×1017 1.00×1017 2.57×1018
    下载: 导出CSV
  • [1] 李欣, 刘建朋, 陈烁, 等. 大高宽比纳米硅立柱的感应耦合等离子体刻蚀工艺优化[J]. 强激光与粒子束, 2017, 29: 074102. doi: 10.11884/HPLPB201729.170028

    Li Xin, Liu Jianpeng, Chen Shuo, et al. Process optimization of inductively coupled plasma etching for large aspect ratio silicon nanopillars. High Power Laser and Particle Beams, 2017, 29: 074102 doi: 10.11884/HPLPB201729.170028
    [2] Bredin J, Chabert P, Aanesland A. Langmuir probe analysis of highly electronegative plasmas[J]. Applied Physics Letters, 2013, 102: 154107. doi: 10.1063/1.4802252
    [3] Ross J S, Park H S, Berger R. Couisionless coupling of ion and electron temperatures in counter streaming plasma flows[J]. Physical Review Letters, 2013, 110: 145005. doi: 10.1103/PhysRevLett.110.145005
    [4] Godyak V A. Soviet radio frequency discharge research[M]. A: Delphic Associates Inc., 1986: 28-52.
    [5] Raizer Y P, Gas discharge physics[M]. Berlin: Springer, 1991: 387-394.
    [6] Li S Z, Lim J P, Uhm H S. Discharge characteristics of an atmospheric-pressure capacitively couple radio-frequency argon plasma[J]. Physics Letter, 2006, A360: 304-308.
    [7] 王宇天, 张百灵, 李益文, 等. 基于均匀模型的低气压电容耦合射频放电特性研究[J]. 真空科学与技术学报, 2016, 36(7): 773-778. doi: 10.13922/j.cnki.cjovst.2016.07.09

    Wang Yutian, Zhang Bailing, Li Yiwen, et al. Modeling and characterization of low-pressure capacitive coupled rf discharge properties. Chinese Journal of Vacuum Science and Technology, 2016, 36(7): 773-778 doi: 10.13922/j.cnki.cjovst.2016.07.09
    [8] 吴荣, 李燕, 朱顺管, 等. 等离子体电子温度的发射光谱法诊断[J]. 光谱学与光谱分析, 2008, 28(4): 731-735. doi: 10.3964/j.issn.1000-0593.2008.04.003

    Wu Rong, Li Yan, Zhu Shunguan, et al. Emission spectroscopy diagnostics of plasma electron temperature. Spectroscopy and Spectral Analysis, 2008, 28(4): 731-735 doi: 10.3964/j.issn.1000-0593.2008.04.003
    [9] 董丽芳, 冉俊霞, 尹增谦, 等. 大气压氩气介质阻挡放电中的电子激发温度[J]. 光谱学与光谱分析, 2005, 25(8): 1184-1186. doi: 10.3321/j.issn:1000-0593.2005.08.005

    Dong Lifang, Ran Junxia, Yin Zengqian, et al. Electron excitation temperature of argon dielectric barrier discharge at atmospheric pressure. Spectroscopy and Spectral Analysis, 2005, 25(8): 1184-1186 doi: 10.3321/j.issn:1000-0593.2005.08.005
    [10] 刘大斌, 杨栋, 蒋荣光, 等. 导爆管起爆器瞬态电火花温度的光谱法测定[J]. 光谱学与光谱分析, 2002, 22(4): 670-672. doi: 10.3321/j.issn:1000-0593.2002.04.041

    Liu Dabin, Yang Dong, Jiang Rongguang, et al. Spectroscopic determination of the dynamic electrical spark temperature of nonel tube igniter. Spectroscopy and Spectra Analysis, 2002, 22(4): 670-672 doi: 10.3321/j.issn:1000-0593.2002.04.041
    [11] 孙成琪, 高阳, 杨德明, 等. 光谱法测量低压热喷涂等离子体的电子温度和电子密度[J]. 激光与光电子学进展, 2015, 52: 043001. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201504034.htm

    Sun Chengqi, Gao Yang, Yang Deming, et al. Spectroscopic method for measuring electron temperature and electron density of thermal spray plasma. Laser & Optoelectronics Progress, 2015, 52: 043001 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201504034.htm
    [12] 袁玉章, 张军, 白珍, 等. 等离子体对相对论返波管工作影响的粒子模拟[J]. 强激光与粒子束, 2018, 30: 043002. doi: 10.11884/HPLPB201830.170444

    Yuan Yuzhang, Zhang Jun, Bai Zhen, et al. Simulation research on influence of RF breakdown plasma on performance of relative backward wave oscillator. High Power Laser and Particle Beams, 2018, 30: 043002 doi: 10.11884/HPLPB201830.170444
    [13] Chen Guangye, Raja L L. Fluid modeling of electron heating in low-pressure, high-frequency capacitively coupled plasma discharges[J]. Journal of Applied Physics, 2004, 96(11): 6073 doi: 10.1063/1.1818354
    [14] 杨旺, 刘学平, 夏焕雄, 等. 容性耦合等离子体腔室放电特性仿真研究[J]. 真空科学与技术学报, 2015, 35(6): 639-645. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201506001.htm

    Yang Wang, Liu Xueping, Xia Huanxiong, et al. Simulation of discharge characteristics of capacitively coupled plasma. Chinese Journal of Vacuum Science and Technology, 2015, 35(6): 639-645 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201506001.htm
    [15] 杨龙, 王强, 阚明先, 等. 微放电等离子体多负辉区结构融合过程数值模拟研究[J]. 强激光与粒子束, 2017, 29: 085002. doi: 10.11884/HPLPB201729.170047

    Yang Long, Wang Qiang, Kan Mingxian, et al. Numerical simulation of multiple negative glow regions in micro discharge plasma. High Power Laser and Particle Beams, 2017, 29: 085002 doi: 10.11884/HPLPB201729.170047
    [16] Mouchtouris S, Kokkoris G. A hybrid model for low pressure inductively coupled plasmas combining a fluid model for electrons with a plasma-potential-dependent energy distribution and a fluid-Monte Carlo model for ions[J]. Plasma Sources Science and Technology, 2016, 25: 025007. doi: 10.1088/0963-0252/25/2/025007
    [17] 陈春梅, 摆玉龙, 张洁, 等. 太赫兹波斜入射到磁化等离子体的数值研究[J]. 强激光与粒子束, 2018, 30: 013101. doi: 10.11884/HPLPB201830.170276

    Chen Chunmei, Bai Yulong, Zhang Jie, et al. Numerical study of oblique incidence of terahertz wave to magnetized plasma. High Power Laser and Particle Beams, 2018, 30: 013101 doi: 10.11884/HPLPB201830.170276
    [18] 赵日康, 张紫浩, 张林, 等. 圆柱形等离子体对微波散射的数值模拟与实验研究[J]. 强激光与粒子束, 2017, 29: 053001. doi: 10.11884/HPLPB201729.170043

    Zhao Rikang, Zhang Zihao, Zhang Lin, et al. Microwave scattering by inhomogeneous plasma column. High Power Laser and Particle Beams, 2017, 29: 053001 doi: 10.11884/HPLPB201729.170043
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1548
  • HTML全文浏览量:  226
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-18
  • 修回日期:  2019-02-21
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回