[1] |
屈鹏飞, 王石语, 邵新征, 等. Nd: YAG/Nd: YVO4组合晶体激光器温度稳定性研究[J]. 光学学报, 2017, 37: 0614001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201706016.htmQu Pengfei, Wang Shiyu, Shao Xinzheng, et al. Temperature stability of Nd: YAG/Nd: YVO4 combination crystals laser. Acta Optica Sinica, 2017, 37: 0614001 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201706016.htm
|
[2] |
何启欣, 刘慧芳, 李彬, 等. 多通道半导体激光器温控系统[J]. 光学学报, 2017, 37: 1114002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201711022.htmHe Qixin, Liu Huifang, Li Bin, et al. Multi-channel semiconductor laser temperature control system. Acta Optica Sinica, 2017, 37: 1114002 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201711022.htm
|
[3] |
欧群飞, 钟鸣, 叶大华, 等. 大能量钕玻璃棒状激光器新型热管理技术[J]. 强激光与粒子束, 2007, 19(1): 35-39. http://www.hplpb.com.cn/article/id/2916Eu Qunfei, Zhong Ming, Ye Dahua, et al. Novel heat management technology for high energy Nd: glass rod laser. High Power Laser and Particle Beams, 2007, 19(1): 35-39 http://www.hplpb.com.cn/article/id/2916
|
[4] |
朱成林, 韩晓泉, 冯泽斌, 等. 基于Smith预估补偿的准分子激光器温度控制系统研究[J]. 量子电子学报, 2018, 35(5): 533-538. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201805004.htmZhu Chenglin, Han Xiaoquan, Feng Zebin, et al. Temperature control system of excimer laser based on Smith prediction compensation. Chinese Journal of Quantum Electronics, 2018, 35(5): 533-538 https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201805004.htm
|
[5] |
Andresen M, Ma K, Buticchi G, et al. Junction temperature control for more reliable power electronics[J]. IEEE Trans Power Electronics, 2017, 33(1): 765-776.
|
[6] |
Costa B A, Lemos J M, Guillot E. Solar furnace temperature control with active cooling[J]. Solar Energy, 2018, 159: 66-77. doi: 10.1016/j.solener.2017.10.017
|
[7] |
Zhai Z, Shen H, Chen J. Fast growth of conductive amorphous carbon films by HFCVD with filament temperature control[J]. Materials Letters, 2018, 228: 293-296.
|
[8] |
吴俊, 李长俊. 基于TEC的高精度温控系统设计[J]. 电子设计工程, 2017, 25(20): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201720019.htmWu Jun, Li Changjun. Design of high precision temperature control system based on TEC. Electronic Design Engineering, 2017, 25(20): 75-80 https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201720019.htm
|
[9] |
卢燕, 张艳荣, 胡小林. 基于模糊PID控制的半导体激光器温度控制系统设计[J]. 机械与电子, 2018, 36(6): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYD201806012.htmLu Yan, Zhang Yanrong, Hu Xiaolin. Design of semiconductor laser temperature control system based on fuzzy PID. Machinery & Electronics, 2018, 36(6): 52-55 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYD201806012.htm
|
[10] |
郑奇, 朱瑜, 孙军. 利用LD温漂增强LIBS激光器温度适应性研究[J]. 激光与红外, 2016(12): 1473-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201612008.htmZheng Qi, Zhu Yu, Sun Jun. Research on laser temperature adaptability in LIBS enhanced by LD temperature drift. Laser & Infrared, 2016(12): 1473-1476 https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201612008.htm
|
[11] |
张克非, 蒋涛, 邵龙, 等. 基于新型模糊PID控制单元的LD精密温控研究[J]. 光学精密工程, 2017, 25(3): 648-655. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201703014.htmZhang Kefei, Jiang Tao, Shao Long, et al. Research on precision temperature control of laser diode based on the novel fuzzy PID control unit. Optical and Precision Engineering, 2017, 25 (3): 648-655 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201703014.htm
|
[12] |
张艳锋, 严家明. 基于最小二乘法的压力传感器温度补偿算法[J]. 计算机测量与控制, 2007, 15(12): 1870-1871. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200712077.htmZhang Yanfeng, Yan Jiaming. Compensation method of pressure sensor based on minimum two multiplication principle. Computer Measurement & Control, 2007, 15(12): 1870-1871 https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200712077.htm
|
[13] |
张华强, 李玉峰. 基于最小二乘法的热量表温度采集模块设计[J]. 仪表技术与传感器, 2011(2): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201102005.htmZhang Huaqiang, Li Yufeng. Design of heat meter temperature acquisition module based on least square method. Instrument Technology and Sensors, 2011(2): 16-18 https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201102005.htm
|
[14] |
Majumdar S J, Bishop C H, Etherton B J, et al. Can an ensemble transform Kalman filter predict the reduction in forecast-error variance produced by targeted observations[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 127(578): 2803-2820.
|
[15] |
Ma J M J, Teng J F. Predict chaotic time-series using unscented Kalman filter[C]//IEEE International Conference on Machine Learning & Cybernetics. 2005.
|
[16] |
Lynch C, Omahony M J, Scully T. Simplified method to derive the Kalman filter covariance matrices to predict wind speeds from a NWP model[J]. Energy Procedia, 2014, 62: 676-685.
|
[17] |
孙田川, 刘洁瑜. 一种新的MEMS陀螺温度误差建模与补偿方法[J]. 压电与声光, 2017, 39(1): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG201701034.htmSun Tianchuan, Liu Jieyu. A novel temperature-relate error modeling and temperature compensation method of MEMS gyroscope. Piezoelelectrics & Acoustooptics, 2017, 39(1): 136-139 https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG201701034.htm
|
[18] |
刘熙明, 王义, 聂思敏. 基于分布式无线网络的水质监控系统设计[J]. 渔业现代化, 2017, 44(4): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HDXY201704008.htmLiu Ximing, Wang Yi, Nie Simin. Design of water quality monitoring system based on distributed wireless network. Fishery Modernization, 2017, 44(4): 50-56 https://www.cnki.com.cn/Article/CJFDTOTAL-HDXY201704008.htm
|
[19] |
Wang Xiuli, Wang Yongji, Zhou Hui, et al. PSO-PID: A novel controller for AQM routers[C]// IEEE International Conference on Wireless and Optical Communications Networks. 2006: 126-131.
|