留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光系统中半导体激光器温度稳定系统研究与设计

刘熙明 魏旭 窦立刚

刘熙明, 魏旭, 窦立刚. 激光系统中半导体激光器温度稳定系统研究与设计[J]. 强激光与粒子束, 2019, 31: 021002. doi: 10.11884/HPLPB201931.180335
引用本文: 刘熙明, 魏旭, 窦立刚. 激光系统中半导体激光器温度稳定系统研究与设计[J]. 强激光与粒子束, 2019, 31: 021002. doi: 10.11884/HPLPB201931.180335
Liu Ximing, Wei Xu, Dou Ligang. Research and design of semiconductor laser temperature stabilization system in laser system[J]. High Power Laser and Particle Beams, 2019, 31: 021002. doi: 10.11884/HPLPB201931.180335
Citation: Liu Ximing, Wei Xu, Dou Ligang. Research and design of semiconductor laser temperature stabilization system in laser system[J]. High Power Laser and Particle Beams, 2019, 31: 021002. doi: 10.11884/HPLPB201931.180335

激光系统中半导体激光器温度稳定系统研究与设计

doi: 10.11884/HPLPB201931.180335
基金项目: 

国家自然科学基金项目 61462015

详细信息
    作者简介:

    刘熙明(1993—),男,工程师,主要从事自动化智能控制、无线通信方面的研究;472148691@qq.com

  • 中图分类号: TP29

Research and design of semiconductor laser temperature stabilization system in laser system

  • 摘要: 激光器系统中半导体激光器的功率输出稳定度和工作温度有很大的关系,为了使大功率半导体激光器输出功率稳定,需要对激光器实现高精度、快速温度控制。针对现有的激光系统中激光器温度控制系统存在控制精度不够高、控制速度慢等问题,设计了一种温度稳定系统,采用PT-100热电偶测量激光器温度,并使用最小二乘法对温度数据进行拟合,使得温度测量精度达到0.01 ℃;使用改进粒子群算法优化(PSO)的PID控制器实现温度控制。仿真实验和实际测试表明,所设计的温度稳定系统能够很好地控制激光器温度,达到目标温度所需的调节时间小于11 s,达到稳态后温度波动在±0.02 ℃内。与传统的温度控制方式相比,所设计的系统能够实现参数自整定并自动调节温度,对大功率激光系统中激光器温度具有良好稳定效果。
  • 图  1  系统控制结构

    Figure  1.  Control structure of system

    图  2  温度测量电路

    Figure  2.  Schematic diagram of temperature measurement circuit

    图  3  温度控制部分电路图

    Figure  3.  Schematic diagram of temperature control circuit

    图  4  控制系统原理图

    Figure  4.  Control principle of system

    图  5  测试设备连接结构图

    Figure  5.  Connection structure diagram of test equipments

    图  6  实测温度、预测温度以及预测误差结果

    Figure  6.  Error of measured temperature and predicted temperature

    图  7  PSO-PID控制器和PID控制器控制结果对比

    Figure  7.  Contrast of control result between PSO-PID control and PID control

    图  8  激光器温度控制系统安装结构示意图

    Figure  8.  Schematic diagram of installation structure of laser temperature controller

    图  9  软件控制流程图

    Figure  9.  Flow chart of software control

    图  10  温度控制测试结果

    Figure  10.  Test result of temperature control

    图  11  温度稳定测试结果图

    Figure  11.  Test results of temperature stability

  • [1] 屈鹏飞, 王石语, 邵新征, 等. Nd: YAG/Nd: YVO4组合晶体激光器温度稳定性研究[J]. 光学学报, 2017, 37: 0614001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201706016.htm

    Qu Pengfei, Wang Shiyu, Shao Xinzheng, et al. Temperature stability of Nd: YAG/Nd: YVO4 combination crystals laser. Acta Optica Sinica, 2017, 37: 0614001 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201706016.htm
    [2] 何启欣, 刘慧芳, 李彬, 等. 多通道半导体激光器温控系统[J]. 光学学报, 2017, 37: 1114002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201711022.htm

    He Qixin, Liu Huifang, Li Bin, et al. Multi-channel semiconductor laser temperature control system. Acta Optica Sinica, 2017, 37: 1114002 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201711022.htm
    [3] 欧群飞, 钟鸣, 叶大华, 等. 大能量钕玻璃棒状激光器新型热管理技术[J]. 强激光与粒子束, 2007, 19(1): 35-39. http://www.hplpb.com.cn/article/id/2916

    Eu Qunfei, Zhong Ming, Ye Dahua, et al. Novel heat management technology for high energy Nd: glass rod laser. High Power Laser and Particle Beams, 2007, 19(1): 35-39 http://www.hplpb.com.cn/article/id/2916
    [4] 朱成林, 韩晓泉, 冯泽斌, 等. 基于Smith预估补偿的准分子激光器温度控制系统研究[J]. 量子电子学报, 2018, 35(5): 533-538. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201805004.htm

    Zhu Chenglin, Han Xiaoquan, Feng Zebin, et al. Temperature control system of excimer laser based on Smith prediction compensation. Chinese Journal of Quantum Electronics, 2018, 35(5): 533-538 https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201805004.htm
    [5] Andresen M, Ma K, Buticchi G, et al. Junction temperature control for more reliable power electronics[J]. IEEE Trans Power Electronics, 2017, 33(1): 765-776.
    [6] Costa B A, Lemos J M, Guillot E. Solar furnace temperature control with active cooling[J]. Solar Energy, 2018, 159: 66-77. doi: 10.1016/j.solener.2017.10.017
    [7] Zhai Z, Shen H, Chen J. Fast growth of conductive amorphous carbon films by HFCVD with filament temperature control[J]. Materials Letters, 2018, 228: 293-296.
    [8] 吴俊, 李长俊. 基于TEC的高精度温控系统设计[J]. 电子设计工程, 2017, 25(20): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201720019.htm

    Wu Jun, Li Changjun. Design of high precision temperature control system based on TEC. Electronic Design Engineering, 2017, 25(20): 75-80 https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201720019.htm
    [9] 卢燕, 张艳荣, 胡小林. 基于模糊PID控制的半导体激光器温度控制系统设计[J]. 机械与电子, 2018, 36(6): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYD201806012.htm

    Lu Yan, Zhang Yanrong, Hu Xiaolin. Design of semiconductor laser temperature control system based on fuzzy PID. Machinery & Electronics, 2018, 36(6): 52-55 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYD201806012.htm
    [10] 郑奇, 朱瑜, 孙军. 利用LD温漂增强LIBS激光器温度适应性研究[J]. 激光与红外, 2016(12): 1473-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201612008.htm

    Zheng Qi, Zhu Yu, Sun Jun. Research on laser temperature adaptability in LIBS enhanced by LD temperature drift. Laser & Infrared, 2016(12): 1473-1476 https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201612008.htm
    [11] 张克非, 蒋涛, 邵龙, 等. 基于新型模糊PID控制单元的LD精密温控研究[J]. 光学精密工程, 2017, 25(3): 648-655. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201703014.htm

    Zhang Kefei, Jiang Tao, Shao Long, et al. Research on precision temperature control of laser diode based on the novel fuzzy PID control unit. Optical and Precision Engineering, 2017, 25 (3): 648-655 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201703014.htm
    [12] 张艳锋, 严家明. 基于最小二乘法的压力传感器温度补偿算法[J]. 计算机测量与控制, 2007, 15(12): 1870-1871. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200712077.htm

    Zhang Yanfeng, Yan Jiaming. Compensation method of pressure sensor based on minimum two multiplication principle. Computer Measurement & Control, 2007, 15(12): 1870-1871 https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200712077.htm
    [13] 张华强, 李玉峰. 基于最小二乘法的热量表温度采集模块设计[J]. 仪表技术与传感器, 2011(2): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201102005.htm

    Zhang Huaqiang, Li Yufeng. Design of heat meter temperature acquisition module based on least square method. Instrument Technology and Sensors, 2011(2): 16-18 https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201102005.htm
    [14] Majumdar S J, Bishop C H, Etherton B J, et al. Can an ensemble transform Kalman filter predict the reduction in forecast-error variance produced by targeted observations[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 127(578): 2803-2820.
    [15] Ma J M J, Teng J F. Predict chaotic time-series using unscented Kalman filter[C]//IEEE International Conference on Machine Learning & Cybernetics. 2005.
    [16] Lynch C, Omahony M J, Scully T. Simplified method to derive the Kalman filter covariance matrices to predict wind speeds from a NWP model[J]. Energy Procedia, 2014, 62: 676-685.
    [17] 孙田川, 刘洁瑜. 一种新的MEMS陀螺温度误差建模与补偿方法[J]. 压电与声光, 2017, 39(1): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG201701034.htm

    Sun Tianchuan, Liu Jieyu. A novel temperature-relate error modeling and temperature compensation method of MEMS gyroscope. Piezoelelectrics & Acoustooptics, 2017, 39(1): 136-139 https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG201701034.htm
    [18] 刘熙明, 王义, 聂思敏. 基于分布式无线网络的水质监控系统设计[J]. 渔业现代化, 2017, 44(4): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HDXY201704008.htm

    Liu Ximing, Wang Yi, Nie Simin. Design of water quality monitoring system based on distributed wireless network. Fishery Modernization, 2017, 44(4): 50-56 https://www.cnki.com.cn/Article/CJFDTOTAL-HDXY201704008.htm
    [19] Wang Xiuli, Wang Yongji, Zhou Hui, et al. PSO-PID: A novel controller for AQM routers[C]// IEEE International Conference on Wireless and Optical Communications Networks. 2006: 126-131.
  • 加载中
图(11)
计量
  • 文章访问数:  1481
  • HTML全文浏览量:  420
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-21
  • 修回日期:  2019-01-18
  • 刊出日期:  2019-02-15

目录

    /

    返回文章
    返回